

MEDDELELSER NR. 114

BJØRN E. LYTSKJOLD
Topographer

Magnetic Survey in Svalbard 1985-1987

Bjørn E. Lytskjold Norsk Polarinstitutt P.O.B. 158
N-1330 Oslo Lufthavn

ISBN 82-90307-88-8

CONTENTS

Page

1. Introduction 4
2. Geomagnetism in general 4
3. Favourable conditions 6
4. The magnetic observatories in Svalbard 6
5. Instruments 7
5.1 The quartz horizontal-force magnetometer 7
5.2 The proton magnetometer 7
6. Field work 7
6.1 Selection of stations 7
6.2 Marking of field stations 8
6.3 Positioning 8
6.4 Determination of azimuth 8
6.5 Magnetic observations 9
7. Data processing 10
7.1 Removal of diurnal variation 10
7.2 Secular variation 11
7.3 Determining the components 11
8. Results 12
8.1 Presentation of field station measurements. 12
8.2 Geomagnetic contour charts 12
8.3 Correction table for secular variation 13
8.4 Valuation of the collected data 13
9. Suggestions for future works 14
10. Acknowledgements 14
11. References 14

Appendix 1: Map of magnetic stations 1985-1987.
Appendix 2: List of field stations and matching geomagnetic components.
Appendix 3: Correction tables for assumed secular variations.
Appendix 4: Isoline map of geomagnetic declination for epoch 1985.5.
Appendix 5: Isoline map of geomagnetic total intensity for epoch 1985.5.
Appendix 6: Isoline map of geomagnetic horizontal component for epoch 1985.5.
Appendix 7: Isoline map of geomagnetic vertical component for epoch 1985.5.

1. INTRODUCTION

This report presents the result of a geomagnetic survey in Svalbard that took place during the summers of 1985,1986 and 1987. The field survey was carried out by Norsk Polarinstitutt (NP) - the Norwegian Polar Research Institute - as parts of the Institute's annual Svalbard Expeditions. Topographer Sigurd Helle and the author were responsible for the field measurements in 1985 and topographer Knut Svendsen and the author in 1986. The author finished the field work in 1987.

A magnetic map covering Svalbard was published in 1957 by Kaare Z. Lundquist, at that time hydrographer at NP. He collected available observations made in the area the oldest made by Willem Barents in 1596 - and supplied it with own measurements from 1952 and 1953. With these observations he compiled a map that presented the magnetic declination in Svalbard for the epoch 1930 (NP, skrifter nr. 110). Systematic corrections for magnetic storms were not possible in his work. He corrected, however, all observations with a characteristic daily variation and a calculated secular variation. In 1957 and 1958 Lundquist continued the magnetic measurements to compile better isomagnetic maps. The purpose was to improve the mapping of the declination, which was highly needed when publishing sea charts and topographical maps.

Considering the inhomogenity of his material, a systematic survey was clearly needed.

The purposes for mapping the geomagnetic field were:

1. Determination of the declination for use on the main map series covering Svalbard.
2. Determination of the field intensity in Svalbard for scientific purposes.

It was decided to compile isoline maps of the geomagnetic components $\mathrm{D}, \mathrm{F}, \mathrm{H}$ and Z in the scale of 1:1 200000 to meet the purposes.

2. GEOMAGNETISM IN GENERAL

The earth's magnetic field has two internal sources:

- The earth's interior, in particular the core, being responsible for the major part of the field.
- Magnetic minerals in the earth's crust creating regional and local anomalies.

In addition there is one external source:

- In the upper atmosphere and magnetosphere currents cause temporary disturbances in the field. A secondary effect of these currents is induced current
in the ground. Thereby the observed effects of atmospheric currents also depend on the conductivity of the ground.

The geomagnetic field is described by these components:
$\mathrm{F}=$ The geomagnetic field's total intensity.
$\mathrm{H}=$ The geomagnetic field's horizontal component.
$\mathrm{Z}=$ The geomagnetic field's vertical component.
Measuring unit for F, H and Z is nT .
$\mathrm{D}=$ Geomagnetic declination, positive values represent easterly declination, negative values represent westerly declination.
$\mathrm{I}=$ Geomagnetic inclination.
Measuring unit for D and I is degree.
The field originating from the earth's interior is changing slowly and irregularly. Typical time scales are years and longer. This variation, called secular variation, reflects prosesses of the interior of the earth and is consequently a source of information of these. The aim of a magnetic survey is to map this field.

The anomalies due to the magnetic characteristics of the crust are of permanent nature, changing only in geological time scales. Such anomalies are of value to geologists.
The external field is basically of solar origin. The particles of the solar wind interact with the earth's magnetic field resulting in complicated current patterns in the upper athmosphere. The magnetic fields set up by these currents are of value to the science of the upper athmosphere. From a magnetic survey point of view, however, they are regarded as disturbances. The time scale ranges from fractions of a second to weeks. There are regular components in these disturbances e.g. daily variations due to solar heating of the athmosphere. The major parts, however, have the form of so called magnetic storms. These are global phenomena, but their apperance varies strongly with the latitude. Especially the polar regions have large and very irregular disturbances.

Deviations of several hundred nT in F and a few degrees for D are quite common. The average field for days not affected by magnetic storms is usually a good approximation to the intemal field. Such quiet days are scarce in the auroral zone and the polar cap regions. Observations over at least several months are needed to obtain a quiet field value. In the polar regions we encounter the additional problem that the quiet field is contaminated by the interplanetary magnetic field. This is due to the fact that the field lines in the region are open into the interplanetary space. The sector structure of solar wind is in this way seen in the ground field as variations of several tens of $n T$ (Friis-Christensen 1971, Albrigtsen et. al. 1981).

The internal field is assumed to coincide with the mean field of quiet days. Point measurements made during a field survey will most of the time be affected by external disturbances. Theoretically a solution is to wait for magnetically quiet conditions, but such are unpleasantly infrequent in the Arctic. Therefore this method is hopeless from a practical point of view. Measurments have to be done whenever the surveyor visits a field station and all readings are treated as if they are affected by disturbances.

Recorded data from a nearby running observatory will enable us to correct the readings and find the quiet mean values.

3. FAVOURABLE CONDITIONS

To avoid severe magnetic storms, the field work had to be done when solar wind was supposed to be at a minimum. 1985, 1986 and 1987 were supposed to be good years. A diagram of the sun spot activity is shown in figure 1.

Fig. 1: Smoothed observed sunspot number

4. THE MAGNETIC OBSERVATORIES IN SVALBARD

When the survey took place, two magnetic observatories were operating:

$$
\begin{array}{ll}
\text { Bjørnøya } & \text { (since 1952) at } 74^{0} 30^{\prime} \mathrm{N} 19^{\circ} 02^{\prime} \mathrm{E} \\
\text { Ny-Ålesund } & \text { (since 1966) at } 78^{\circ} 55^{\prime} \mathrm{N} 11^{\circ} 57^{\prime} \mathrm{E}
\end{array}
$$

Both are run by Nordlysobservatoriet (The Auroral Observatory, University of Tromsø).
The Polish Academy of Science is operating an observatory in Hornsund $\left(77^{\circ} 00^{\prime} \mathrm{N}\right.$ $15^{\circ} 36$ '). Data from this site would be very valuable for this survey. Unfortunately we were not able to obtain the relevant information.

5. INSTRUMENTS

The surveyors mainly relied on instruments belonging to NP, in addition some were borrowed from Statens Kartverk (Norwegian Mapping Authority) and the University of Oslo. In all the parties disposed:

- 2 Andersen \& Sørensen Quartz Horizontal-Force Magnetometers (QHM)
- 2 Elsec 770 Proton Magnetometers
- 2 Wild T2 Theodolites
- 2 Clocks, GMT syncronized
- 1 Wild GAK1 Gyro Theodolite (available in 1985 and 1986)

5.1 The Quartz Horizontal-Force Magnetometers

The QHM is primarily intended for determination of the horizontal component H of the magnetic field, but also usable for determination of the declination D. Both instruments were calibrated before and after each season at Danish Meteorological Institute to check their constants. No significant changes were noted.

5.2 The Proton Magnetometers

The proton magnetometer measures the total magnetic field intensity F . It is a scalar measurement independent of the field vectors direction with a resolution of 1 nT .

6. FIELD WORK

The survey took place during three summer seasons:

1985:

From July 19 to August 28 two parties measured in 59 field stations. This cruise visited the eastem part of Svalbard, including places such as Hopen, the east coast of Spitsbergen, islands in Hinlopenstretet, Tusenøyane, Edgeøya, Barentsøya, Nordaustlandet, Kong Karls Land, Kvitøya and Sjuøyane. On the northem coast of Spitsbergen surveying was carried out on Mosselhalvøya, Gråhuken and Reinsdyrflya.

1986:

During this summer two field parties measured in 53 stations in Spitsbergen. From July 18 to August 21 one party based in Longyearbyen worked mainly in an area between $77^{\circ} \mathrm{N}$ and $79^{\circ} \mathrm{N}$. From August 14 to 21 a party based in Ny -Ålesund worked mainly north of $79^{\circ} \mathrm{N}$ and west of Wijdefjorden.

1987:

One party worked on Spitsbergen from July 18 to August 22 visiting 20 stations. Most of these were new points while some were "trouble makers" from 1985 and 1986. The party was mainly stationed in Longyearbyen.

6.1 Selections of Stations

The selection of magnetic field stations followed these directions:

- The network of stations should be as homogeneous as possible, characteristic distance between the stations set to $30-50 \mathrm{~km}$.
- In cases stations used by K. Z. Lundquist could be identified, these were preferred.
- Geological maps were checked when new stations were selected to avoid regions with magnetic rock. In the field the area around a planned point was examined with a proton magnetometer. If no serious anomalies were found, the point could be used.

6.2 Mapping the Field Stations

All field stations were marked with aluminium bolts when situated on solid rock. The major part, however, was to be found in gravel deposits near the sea or on weathered rock, here $60-70 \mathrm{~cm}$ long aluminium tubes were forced into the ground. In this way a permanent network enables remeasurments of the magnetic field in the future.

6.3 Positioning

When possible, the exact position of a station was determinded by topographical methods. Stations were normally marked on aerial photos and topographical maps.

6.4 Determination of Azimuth

In each field station the surveyor had to determine the direction to true north. During the survey two methods were used:

1. Determine the station's position and an azimuth by observations to triangulation points, using theodolite.
2. Determine the true north direction using gyro theodolite.

Alt. 1 was the methode mainly used, however it demands good weather conditions. This is a problem in Svalbard where fog and low cloud cover is a common obstacle during the summer. In addition, the triangulation network on Svalbard in general is sparse. This made solutions by triangulation impossible in some areas, especially in eastern and northern regions.

Alt. 2 was used for many of the measurements in east and north. Without the gyro many of the points would have been given up as no triangulation points could be seen. According to the gyro's users manual, the instrument is constructed for use below 70° latitude. Exceeding this the accuracy is supposed to decrease. In 1985 the gyro was used as far north as $80^{\circ} 15^{\prime}$. The oscillation around the true north axis had a relatively low frequency, but the gyro still proved to be reliable. The accuracy was found to be sufficient for magnetic purpose, exceeding that of the QHM's telescope and circle reading devices.

6.5 Magnetic Observations

It proved to be very difficult to avoid disturbances from the external field. The survey was carried out during what was supposed to be quiet periods, despite this nearly all measure- ments were affected more or less dramatically.

Special care had to be taken when carrying out magnetic measurements, such as dressing to avoid magnetic disturbance, as well as keeping all other equipment at a distance.

The measurements were carried out in two sections:

1. QHM

In each station a QHM was mounted on a non-magnetic tripod. Observations were normally carried out to enable calculation of two values of the magnetic declination D and two values of the horizontal field component H . Points of time were noted together with the internal temperature of the QHM.

If there was time for it , extra measurements were done.

Fig. 2: Measuring with QHM

The accuracy of the QHM used in field measurments in Svalbard are not supposed to exceed 1 ' due to the latitude. The instruments were very sensitive for wind and were difficult to use in humid weather, however, the QHMs proved to be very reliable.

2. Proton Magnetometer

To determine a good average value for the total field intensity readings were done minimum six times in each station, with half minute intervals. All points of time were noted. The magnetometers were easy to operate and highly reliable.

7. DATA PROCESSING

The purpuse was to compile isomagnetic maps of the four components $\mathrm{D}, \mathrm{F}, \mathrm{H}$ and Z . All values should be calculated back to epoch 1985. 5 - that is for June 1985 - to coincide with The World Magnetic Survey standard. To do this all field measurements had to be corrected for diunal variations, in addition those from 1986 and 1987 also were corrected for secular variations.

7.1 Removal of Diurnal Variation

Each field component had to be corrected for diumal variations to determine the actual quiet mean values at the stations. The corrections were stright forward. Field data were recorded with the point of time noted for all observations. Available data from the observatories were studied. Registrations from 1987 were stored directly in digital form while those from 1985 and 1986 were digitized from registration paper sheets. A computer programme gave the differences between actual field values at the noted points of time and corresponding quiet mean level were calculated. The differences were removed from the field observation to get the quiet mean value for the stations. In addition a three hours mean value was calculated around each observation moment.

Fig. 3: Diurnal variation of Z at an observatory during unstable conditions.

Experiences from similar projects in the Arctic show that such corrections are applicable within $100-150 \mathrm{~km}$ from the observatory (Wilhjelm 1971). Outside this range the spatial correlation decreases rapidly. In case of several observatories a linear interpolation is an acceptable procedure.
For stations within a range of 150 km from Ny - \AA lesund the diurnal corrections were taken directly from the registered data there. South of $78^{\circ} 45^{\prime} \mathrm{N}$ on Spitsbergen and Edgeøya - and on Hopen - corrections were applied averaging the three hours mean values from the Ny -Ålesund and Bjørnøya observatories. Outside these areas - like Kong Karls Land, Nordaustlandet and Kvitøya - corrections were not applied due to large uncertainties.

7.2. Secular Variation

The secular variation is the difference between the annual quiet mean values.
The field measurements were done during three seasons. Since all components should be given for epoch 1985. Five secular variations were applied all measurements from 1986 and 1987. Values from Ny - \AA lesund were used north of $78^{\circ} 45 \mathrm{~N}$, south of this latitude average values for Ny - \AA lesund and Bjørnøya were applied.
At Ny - Ålesund and Bjørnøya the annual quiet mean values for the three components D , H and Z are listed below:

OBSERVATORY	YEAR	D	H	Z
NY-ÅLESUND:	1985	$2^{\circ} 42^{\prime} \mathrm{W}$	7496 nT	53800 nT
	1986	$2^{\circ} 36^{\prime}$	7460	53780
	1987	$2^{\circ} 29^{\prime}$	7425	53770
BJØRNØYA:	1985	$3^{\circ} 47^{\prime} \mathrm{E}$	9155 nT	52890 nT
	1986	$3^{\circ} 55^{\prime}$	9132	52890
	1987	$4^{\circ} 01^{\prime}$	9104	52890

From the quiet mean annual values the secular variations are found to be:

OBSERVATORY	YEARS	D	H	Z
NY-ÅLESUND:	$1985-86$	$6^{\prime} E$	-36 nT	-20 nT
	$1986-87$	7^{\prime}	-35	-10
BJØRNØYA:	$1985-86$	$8^{\prime} \mathrm{E}$	-23 nT	0 nT
	$1986-87$	6^{\prime}	-28	0

7.3 Determining the Components

For a field station the final value of a component C is given as follows:

$$
C=C(S t, t)+\Delta C
$$

$\Delta \mathrm{C}=\mathrm{C}(\mathrm{Ob}, \mathrm{s})+[\mathrm{C}(\mathrm{Ob}, 85)-\mathrm{C}(\mathrm{Ob}, \mathrm{t})]$
$\mathrm{C}=$ final field station value, epoch 1985.5.
$\mathrm{C}(\mathrm{St}, \mathrm{t})=$ value measured at the field station at time t .
$\Delta C=$ correction taken from the observatory
$\mathrm{C}(\mathrm{Ob}, \mathrm{s})=$ secular variation found at the observatory.
$\mathrm{C}(\mathrm{Ob}, 85)=$ reference value for epoch 1985.5 calculated at the observatory.
$\mathrm{C}(\mathrm{Ob}, \mathrm{t})=$ value measured at the observatory at the time the field measurement was done.

The observatories registrate the components $\mathrm{D}, \mathrm{H}, \mathrm{Z}$ and belonging corrections, while D, H and F were measured in the field. This meant that ΔD and ΔH could be found directly from the recorded data, while ΔF was defined like $\Delta F=\Delta Z / \sin I$. Following this procedure the field component values were given as:

$$
\begin{aligned}
& \mathrm{D}=\mathrm{D}(\mathrm{St}, \mathrm{t})+\Delta \mathrm{D} \\
& \mathrm{H}=\mathrm{H}(\mathrm{St}, \mathrm{t})+\Delta \mathrm{H} \cos \mathrm{I}=\mathrm{H} /(\mathrm{F}+\Delta \mathrm{Z}) \\
& \mathrm{Z}=\mathrm{H} \tan \mathrm{I} \\
& \mathrm{~F}=\mathrm{F}(\mathrm{St}, \mathrm{t})+\Delta \mathrm{Z} / \sin \mathrm{I}
\end{aligned}
$$

8. RESULTS

8.1 Presentation of Field Station Measurements

Location of all field stations and the two observatories are showed on the map in appendix 1.

The field stations are listed in appendix 2 . The list contains this information about each field station:

- Number and name
- Measurement date
- Position
- The magnetic components D, F, H, Z and I
- Name of observator

The listed values in appendix 2 are average values found in each station. F is the average of minimum six measurements, D and H were measured minimum two times.

8.2 Geomagnetic Contour Charts

The results of the ground magnetic survey in Svalbard are represented by isomagnetic maps for epoch 1985.5. Four separate maps at a scale of 1:2 000000 were compiled for $\mathrm{D}, \mathrm{H}, \mathrm{Z}$ and F . For each map the component in question is represented by contour lines.

The contour lines were drawn by hand simply by interpolating linearly between the field station values.

The declination map has contour lines with 30 ' intervals. The intensity maps have contour lines with 50 nT intervals.

To ease the reading relative highs are indicated by an arrow pointing up (\mathbf{N}) and relative lows by an arrow pointing down (\mathbf{V}). The isoline maps pertaining to the survey appear in appendix 4-7:

- Appendix 4 : Geomagnetic declination D, epoch 1985.5.
- Appendix 5 : Geomagnetic field's total intensity F, epoch 1985.5.
- Appendix 6 : Geomagnetic field's horizontal component H, epoch 1985.5.
- Appendix 7 : Geomagnetic field's vertical component Z, epoch 1985.5.

8.3 Correction Table for Secular Variation

The stucture of the contour lines compiled for epoch 1985.5 is supposed to be representative for the actual magnetic field for the following 10-15 years.

To find an updated value for the magnetic components, the epoch 1985.5 values have to be corrected by the secular variation since June 1985. Tables of assumed secular variations for $\mathrm{D}, \mathrm{F}, \mathrm{H}$ and Z are found in appendix 3.

8.4 Valuation of the Collected Data

The present survey yields the best maps of the magnetic field in Svalbard so far. However, a couple of weak points are evident:

* In certain areas the anomalies are so large that a more dense network is needed to resolve detailed structures.

It is evident how to heal this weakness: More measurements in the actual areas.

* The reduction to quiet mean level is not properly carried out for measurements too far from the geomagnetic observatories.

This problem was especially serious when operating around Kvitøya, Kong Karls Land and Nordaustlandet in August 1985. All stations there are outside the 150 km limit set for applying diumal corrections found in Ny - \AA lesund. In addition to this the magnetic conditions were very unstable. When the field observations were carried out the registrator in Ny -Ålesund noted significant fluctuations.

This calls for more observatories. Hornsund is already there and should be used in a future supplement survey of southern Spitsbergen. In 1988 Nordlysobservatoriet established an observatory on Hopen. This station will improve surveys on Edgeøya and Tusenøyane and of course provide important data from Hopen itself. Still lacking is the coverage of the northeastern part of Svalbard. This may be solved by putting out automatic observatories during a field survey.

* In the most remote areas uncertainties were connected to the determination of azimuth due to few triangulation points or limitations of available instruments.

To solve this the field stations should be connected to triangulation points by more complex topographical surveying or by bringing two GPS (Global Positioning System) satellite recievers which would give both position and azimuth. The gyro theodolite used was not made for high latitudes. The gyro oscillated with relatively big amplitudes and needed a long time to stabilize. Longer observation periods were preferable, however time was limited during the field survey.

9. SUGGESTIONS FOR FUTURE WORK

Future ground magnetic surveys should take in advantage the development of the D / i-theodolite. This is an unmagnetic theodolite with a fluxgate sensor mounted parallel to the optic axis that measure declination and inclination (Kring Lauridsen, 1985). For field work the theodolite is superior to the traditional QHM.

The main purpose for the 1985-87 survey was to obtain sufficient knowledge about the magnetic declination for use on the main topographic map series of Svalbard. While planning the survey it was obvious to combine this with measurements needed to determine all the geomagnetic components. However, if the aim is to compile a complete set of high quality maps of the geomagnetic field covering Svalbard an aeromagnetic survey is needed.

The structure of the earth's interior undergoes a constant, but slow and irregular change. As the field originates from this source remeasurments are needed to keep the isoline maps updated. Idealistically this should be done every 10-15 year.

10. ACKNOWLEDGEMENTS

The author wishes to thank the staff at The Auroral Observatory, University of Tromsø - particulary Truls Lynne Hansen - for their considerable contribution to the manuscript. Norsk Hydro has also contributed with useful information.

11. REFERENCES

Wilhjem, J. 1971: Ground based geomagnetic measurements in Greenland. Danish meteorological institute, geophysical papers R-15.
Friis-Christiansen, E. 1971: The influence of the direction of the interplanetary magnetic field on the morphology of geomagnetic variations at high magnetic latitude. Danish meteorological institute, geophysical paper R-27.
Albrigtsen, S., Berger, S. \& Brekke A. 1981: Influence of the interplanetary magnetic field on the earth's magnetic field observed at Ny-Ålesund. Geophysica Norvegica,32 pp 23-28.
Kring Lauridsen, E. 1985: Experiences with D/i-fluxgate magnetometer inclusive theory of the instrument and comparison with other methods. Danish meteorological institute, geophysical papers R-71.
Lundquist, K. Z. 1957: Magnetic observations in Svalbard 1596-1953. Norsk Polarinstitutt, skrifter nr. 110.

$\dot{8}$	
\%	
H	 N్
ェ	旨
N	E N
■	$\stackrel{\text { E }}{c}$
-	
$<$	
θ	
$\begin{aligned} & \underset{\sim}{\Psi} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	
$\stackrel{\circ}{2}$	

No.	Station name	Date	ϕ	λ	D	F	Z	H	I	Obs	No.
37M	SVARTODDEN	200886	770 ${ }^{\prime} 7^{\prime} 56{ }^{\prime \prime}$	$15^{\circ} 04^{\prime} 56{ }^{\prime \prime}$	$0^{0} 00.7{ }^{\prime}$	54071.2 nT	53484.2 nT	7951.2 nT	$81^{0} 32.6{ }^{\prime}$	KS	37M
40M	STRAUMNESET	180886	773132	135444	-1 21.9	54059.3	53458.4	8042.5	8126.7	KS	40M
41M	KAPP KLAVENESS	180886	771800	140813	-1 16.6	54062.7	53450.8	8113.3	8122.1	KS	41M
44M	TVIHYRNINGEN	200786	$\begin{array}{llll}78 & 27 & 37\end{array}$	110439	-4 10.9	54288.7	53749.6	7630.3	8155.2	KS	44M
45M	VERLEGENHUKEN	270885	800342	161559		54546.0	54110.2	6951.0	8245.0	SH	45M
46M	POLHJEM	110885	795336	160133	-0 25.7	54598.0	54139.7	7059.2	8234.3	BL	46M
49M	OVERGANGSHYTTA	230786	785413	162233	231.9	54620.6	54126.6	7325.1	8217.6	KS	49M
50M	WORSLEYHAMNA	160886	794139	133826	046.8	54439.9	53971.2	7131.7	8228.4	BL	50M
52M	AMSTERDAMøYA	060887	794443	105150	-0 06.8	54449.2	53984.3	7086.6	8231.3	BL	52M
53M	HERMANSENøYA	210886	783305	121143	-2 27.2	54219.1	53677.5	7640.2	8154.0	BL	53M
54M	BÖLSCHEØYA	040885	$\begin{array}{llll}77 & 1319\end{array}$	220019	435.3	54289.8	53684.9	8081.7	8126.3	SH	54M
57M	MISTAKODDEN	270785	782853	200905	344.5	54427.7	53891.7	7619.9	8157.1	SH	57M
58M	RAKKARDALEN	250785	774724	211851	419.3	54276.7	53701.8	7879.1	8139.2	BL	58M
60M	CROZIERPYNTEN	090885	795508	165127	032.1	54595.7	54143.4	7015.0	8237.1	SH	60M
61M	LUNDEHUKEN	170885	794852	174948	-0 51.0	54489.9	54031.9	7058.4	8233.4	SH	61M
62M	BRAGENESET	090885	794315	184540	202.7	54708.0	54237.9	7156.8	8229.0	BL	62M
63M	ZEIPELODDEN	160885	793953	202830	354.1	54704.8	54234.0	7161.6	8228.7	SH	63M
64M	FOSTERØYANE	160885	793427	191745	247.5	54411.0	53943.0	7121.3	8228.8	BL	64M
65M	E OF EMBLATOPPEN	170885	791104	185209	-	54487.1	53998.1	7282.7	8219.1	SH	65M
66M	VON OTTERøYA	170885	791410	195958	115.8	54357.1	53870.3	7258.7	8219.6	RL	66M
67M	TORELLNESET	170885	792237	204546	008.1	54560.7	54070.9	7294.6	8219.0	BL	67M
68M	VIBEBUKTA	190885	792242	224611	611.3	54945.5	54473.7	7184.7	8229.2	BL	68M
69M	ULENESET	180885	790124	203843	840.1	54472.7	53878.7	8022.4	8131.9	SH	69M
73M	BLȦFJORDSFLYA	050885	780112	230915	617.7	54491.8	53938.1	7748.5	8149.5	BL	73M
74M	RYKE YSE@YANE	030885	774753	250614	731.4	54626.0	54074.6	7741.7	8151.2	SH	74M

No.	Station name	Date	ϕ	λ	D	F	z	H	I	Obs	No.
75M	STONES FORLAND	050885	$77^{\circ} 34^{\prime} 15^{\prime \prime}$	23048'31"	6041.7 '	54417.7 nT	53835.2 nT	7940.7 nT	$81^{\circ} 36.6^{\prime}$	BL	75M
76M	HALVMȦNEØYA	010885	771619	230309	551.6	54396.0	53798.6	8039.8	8100.0	BL	76M
77M	HȦØYA	300785	765236	214229	417.8	54172.5	53522.1	8369.0	8106.8	BL	77M
78M	KAPP LEE Station	270785	780500	204908	343.2	54428.7	53869.3	7783.6	8146.7	BL	78M
80M	REVNOSA	270785	780157	184452	238.8	54287.0	53721.9	7812.6	8143.5	SH	80M
81M	KAPP MURCHISON	230785	774916	182437		54216.0	53632.8	7931.0	8135.3	BL	81M
82M	BOLTODDEN	210785	772956	181105		54240.0			-	SH	82M
83M	E OF BELCHERFJ.	220785	771543	172603	110.2	54186.4	53563.4	8192.9	8118.2	SH	83M
84M	DAVISLAGUNA	210785	765805	171651	151.9	54060.7	53422.6	8281.6	8111.3	BL	84M
86M	PURCHANESET	260885	802144	181712	038.6	54664.8	54253.7	6691.3	8258.1	BL	86m
87M	KROKDALSKNAUSEN	210786	775812	142425	-0 28.0	54186.2	53613.2	7858.3	8139.7	KS	87M
88M	KAPP HAMMERFEST	060885	783916	264604	939.1	54582.7	54072.1	7448.6	8209.4	BL	88M
89M	KIEPERTØYA	180885	785849	213856	225.2	54589.3	54087.7	7383.2	8213.6	BL	89M
90M	LEWINODDEN	210786	780449	134255	-1 12.2	54199.2	53623.5	7877.5	8138.6	KS	90M
91M	HAMNETANGEN	180786	781931	125042	-1 23.9	54165.7	53594.7	7842.9	8140.5	KS	91M
92M	BOHEMANNESET	220787	782226	144556	-0 12.4	54368.5	53813.9	7744.6	8148.6	BL	92M
93M	KAPP THORDSEN	190786	782722	$15 \quad 2813$	003.2	54398.0	53847.4	7718.5	8150.6	KS	93M
94M	W OF PETUNIABUKTA	220786	784154	162718	112.6	54501.1	53968.8	7587.0	8129.9	KS	94M
95M	PHANTOMODDEN	220786	783157	162742	033.4	54538.3	53994.4	7667.0	8155.1	KS	95M
96M	BLIXODDEN	200886	774556	160015	047.7	54185.1	53598.6	7950.3	8133.8	KS	96M
97M	BELVEDERETOPPEN	180886	771656	154747	036.6	54042.1	53423.4	8153.3	8119.4	KS	97M
98M	TORELLKJEGLA	180886	770912	145040	-0 28.1	53995.1	53360.7	8252.1	8112.5	KS	98M
99M	KJELLSTRÖMDALEN W	140886	775616	170002	119.4	54163.6	53584.1	7904.8	8136.5	KS	99M
100M	BRENTSKARDHAUGEN	170886	781027	165507	107.0	54271.8	53711.0	7785.3	8145.2	KS	100M
101M	GJERSTADTOPPEN	150886	784502	130814	-1 46.3	54211.9	53685.2	7541.0	8130.2	KS	101M

No.	Station name	Date	ϕ	λ	D	F	Z	H	I	Obs	No.
102M	WITTENBURGFJELLET	150886	78033'55"	130 $30 \cdot 54 "$	-0057.6'	54311.4 nT	53769.6 nT	7655.0 nT	$81^{0} 53.8{ }^{\prime}$	KS	102M
103M	TYSNESET	230786	790646	154241	-	54558.1	54054.7	7386.0	8213.2	KS	103M
104M	FORSPYNTEN	230786	791755	153511	023.9	54623.1	54130.9	7298.3	8219.3	KS	104M
105M	REGNARDNESET	140886	791636	115556	-1 31.3	54408.5	53896.5	7444.4	8208.1	BL	105M
106m	TREDJEBREEN	210886	792032	105145	-3 14.4	54323.0	53679.0	7340.7	8211.8	BL	106m
107M	GERDØYA	140886	785853	121640	-2 21.0	54311.9	53798.0	7454.1	8206.7	BL	107M
108м	PACHTUSOVFJELLET	240786	785138	183339	221.0	54546.3	54033.4	7454.5	8208.7	KS	108M
109M	KOEFOEDODDEN	020885	762717	245842	646.6	54390.0	53738.8	8391.5	8107.5	SH	109M
110M	BRAASTADSKARDET	020885	763945	252314	719.3	54342.0	53703.5	8306.0	8112.5	SH	110M
111M	KAPP KOBBURG	070885	785455	280756		55007.0	54515.0	7346.0	8219.5	SH	111M
112M	TøMMERNESET	080885	795030	291500	940.5	55223.2	54749.8	7215.2	8229.6	SH	112M
113M	KAPP LAURA	240885	800240	271025	829.8	54980.0	54546.4	6891.1	8248.0	SH	113M
114M	STORøYA	200885	800514	275419	905.9	54929.7	54523.4	6668.9	8301.6	SH	114M
115M	KARL-XII-øYA	230885	803938	250009	724.3	54959.0	54556.0	6643.5	8303.4	SH	115M
116M	ZEILØYA	050885	781631	222839	532.6	54546.7	54003.8	7677.1	8154.5	SH	116M
117M	ISISPYNTEN	190885	794203	264048	833.3	54989.3	54545.8	6969.9	8243.1	BL	117M
118M	MARIAHOLMEN	210786	774053	144900	-0 36.4	54091.1	53490.5	8037.7	8127.3	KS	118M
119M	FOYNØYA	230885	802654	260912	912.1	55021.6	54621.9	6620.0	8305.4	BL	119M
120M	KAPP BRUUN	230885	801557	252059	706.9	54945.2	54526.0	6774.6	8255.1	BL	120M
121M	BELVEDERE	220786	781929	163444	047.0	54478.8	53923.4	7746.8	8149.5	KS	121M
122M	HABENICHTBUKTA	290785	773145	204932	245.6	54279.3	53689.4	7980.7	8132.7	BL	122M
123M	WALDENØYA	270885	803701	314914	334.9	54769.2	54370.8	6593.9	8305.1	BL	123M
124M	WORDIEODDEN	250885	800222	222448	629.4	54691.5	54280.4	6693.3	8258.2	BL	124M
125M	KAPP LOVEN	250885	801542	214600	631.5	54795.5	54368.5	6827.3	8250.6	BL	125M
126M	ROSSøYA	240885	804940	202029	-	54948.0	54555.0	6560.0	8309.0	BL	126m

No.	Station name	Date	ϕ	λ	D	F	Z	H	I	Obs	No.
127M	MARTENSøYA	240885	800 40 '28"	21016'25"	$4^{\circ} 15.9{ }^{\prime}$	54935.5 nT	54535.1 nT	6620.7 nT	$83^{\circ} 04.7{ }^{\prime}$	SH	127M
128M	SCORESBYøYA	250885	802139	212631	430.7	54854.2	54438.3	6742.3	8256.4	SH	128M
129M	KAPP PLATEN	250885	803000	224710	637.3	54809.7	54414.2	6572.2	8306.8	SH	129M
130M	KVALROSSøYA	240785	783026	193755		54794.0	54278.0	7504.0	8208.0	KS	130M
131M	STERTANE	210886	790128	142133	-0 39.5	54132.3	53610.7	7503.9	8201.9	KS	131M
132M	REJMYREFJELLET	150886	782329	171751	205.9	54322.2	53774.8	7695.0	8151.4	KS	132M
133M	KAPP LAILA	140886	780720	144859	-0 14.1	54138.9	53567.8	7850.5	8139.7	KS	133M
134M	W OF LYKTA	220786	784812	152642	001.7	54506.3	53988.5	7490.7	8206.1	KS	134M
135M	LAGERNESET	170886	773133	144535	-0 27.6	54031.1	53431.0	8029.5	8127.2	KS	135M
136M	HELLWALDFJELLET	240786	$78 \quad 4404$	204705	555.1	54285.2	53791.1	7306.0	8215.9	KS	136M
137M	CHIMKOVTOPPEN	250787	$78 \quad 3811$	184555	234.3	54505.3	53974.2	7576.0	8200.6	BL	137M
138M	TEISTBERGET	270787	782148	190008	311.1	54380.5	53826.8	7738.6	8149.1	BL	138M
139M	SVENFJELLET	250787	780555	174514	144.1	54170.1	53595.6	7866.4	8139.0	BL	139M
140M	GANGDALSTOPPANE	200787	780257	154850	034.2	54320.9	53744.5	7883.9	8139.3	BL	140M
141M	SAUSSUREBERGET	010887	772627	152220	010.0	54004.5	53379.5	8191.1	8116.6	BL	141M
142M	O.PETTERSONFJELLET	010887	773249	161313	028.7	54109.9	53506.9	8054.2	8126.4	BL	142M
143M	SPOREN	010887	772957	165519	145.8	54220.2	53604.8	8144.7	8121.6	BL	143M
144M	ERMAKTANGEN	060887	795012	121151	-2 36.0	54510.1	54045.3	7096.6	8231.2	BL	144M
145M	SIGURDFJELLET	060887	791638	134027	-1 33.5	54507.1	54014.6	7306.3	8217.8	BL	145M
146M	NORDBREEN	050887	793840	154351	227.0	54729.5	54250.1	7223.8	8224.9	BL	146m
147M	VILLA MøEN	050887	792825	155233	250.4	54631.9	54145.6	7263.0	8221.6	BL	147M
148M	POINCARETOPPEN	050887	791047	173229	430.0	-	-	-	-	BL	148M
149M	N OF AKTERHOLTEN	110887	774906	182247	237.3	54246.2	53667.0	7904.4	8137.3	BL	149M
150M	KVALHOVDEN	110887	773049	181414	249.6	54161.1	53568.2	7990.8	8130.9	BL	150M
151M	AGARDHBUKTA HUT	110887	780305	183946	242.9	54321.7	53746.2	7884.5	8139.3	BL	151M

Appendix 3: Correction tables for assumed secular variations

Appendix 4: Isoline map of geomagnetic declination for epoch 1985.5
Appendix 5: Isoline map of geomagnetic total intensity for epoch 1985.5
Appendix 6: Isoline map of geomagnetic horizontal component for epoch 1985.5
Appendix 7: Isoline map of geomagnetic vertical component for epoch 1985.5

