

Fram Strait Cruise Report 23rd August – 12th September 2015

Norsk Polarinstitutt Framsentret 9296 Tromsø

Tel: +47 77 75 05 00 Fax: +47 77 75 05 01

Table of Contents

Scientific Participants	3
Cruise Outline	5
Sailing Log	6
Moorings Recovered	10
Moorings deployed	11
CTD Measurements	13
CTD Package Configuration	13
CTD sections	13
CTD Sensor Calibration	20
Tracer Sampling	22
Sea ice measurements	
CDOM-Heat Optics work	27
Water sampling	29
In-situ measurements	30
Experimental work	31
VMADCP data	32
LADCP data	34
Echo sounder data	36
Appendix 1: Summary of CTD stations	38
Appendix 2: Moorings recovered during FS2015	42
Appendix 3: Moorings deployed during FS2015	50

Scientific Participants

Physical and chemical oceanography

- 1. Laura de Steur, NPI (Chief scientist, moorings, LADCP)
- 2. Paul Dodd, NPI, (CTD, tracers, VMADCP)
- 3. Alexey Pavlov, NPI (CTD, tracers, optics, sea ice)
- 4. Kjersti Kalhagen, UiB (CTD)
- 5. Mhamud Ghani, UiB (CTD)
- 6. Adam Cooper, Univ. Bristol (CTD)
- 7. Jenny Ullgren, NERSC (CTD)
- 8. Alessia Aloise, Univ. of Messina/IMR (CTD)
- 9. Piotr Kowalczuk, IOP, (optics)
- 10. Anna Raczkowska, IOP (optics)
- 11. Monika Zablocka, IOP (optics)

Sea ice

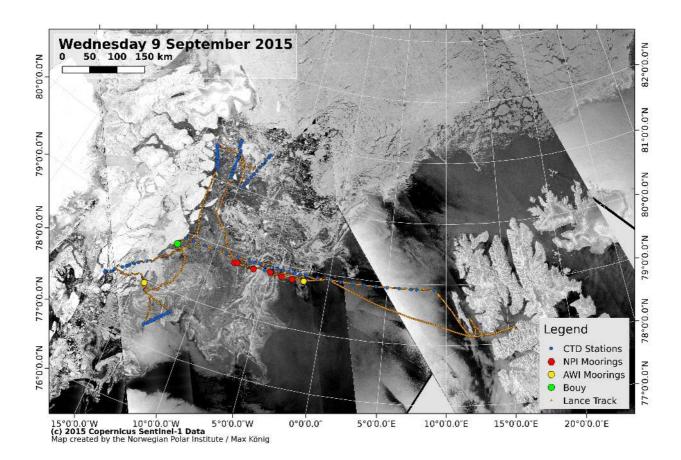
- 12. Anja Rösel (Sea ice)
- 13. Malin Johanson (Sea ice)

Technical

- 14. Kristen Fossan, NPI (moorings)
- 15. Are Bjørdal, NPI (moorings, sea ice, miljødata)
- 16. Ruden Dens, NPI (miljødata, sea ice)

Scientific participants: a. Laura de Steur, b. Are Bjørdal, c. Adam Cooper, d. Ruben Dens, e. Paul A. Dodd, f. Kristen Fossan, g. Mhamud Ghani, h. Kjersti Kalhagen, i. Piotr Kowalczuk, j. Malin Johansson, k. Alexy Pavlov, l. Alessia Aloise, m. Anja Rösel, n. Jenny Ullgren, o. Anna Raczkowska, p. Monika Zablocka.

Cruise Outline


NPI has maintained an array of oceanographic moorings in the East Greenland Current in Fram Strait since the early 1990s. This array has provided a long time series of observations with which to monitor the outflow from the Arctic Ocean. The main purpose of the 2015 Fram Strait cruise (FS2015) was to recover and redeploy the mooring array in western Fram Strait. All NPI moorings were recovered and redeployed as planned. In addition, two moorings from AWI were recovered: one in the Norske Trough, and the central Fram Strait mooring F10-12. The AWI mooring in the Norske Trough also contained an AADI DL7 string (measuring temperature/salinity/pressure) from NPI, which was unfortunately damaged and had not collected data. This had likely happened already during the deployment in 2014.

NPI has carried out annual sections of CTD and conservative tracer measurements along 78°50'N since 1997. The zonal extent of sections varies from year to year, depending on ice conditions, but the section between the 0 and 10°W (covering the main outflow from the Arctic Ocean) has been sampled every year. During the 2015 Fram Strait cruise the main CTD section was completed between 10° 30'W and 9°E. LADCP data were collected on all stations. Water samples were collected for analysis of δ^{18} O, nutrient, coloured dissolved organic matter (CDOM), dissolved organic carbon-13 (DO¹³C), dissolved inorganic carbon (DIC), total alkalinity (A_T), Iodide, Iodate and ¹²⁹I samples at most stations along the section. As a pilot project on small-scale mixing, echo sounder data was collected by NERSC (J. Ullgren).

In addition, two CTD/LADCP/tracer sections were completed across the Norske Trough and three across the Westwind Trough on the East Greenland Shelf. These sections were completed to investigate the circulation of warm Altantic water within the Belgica - Norske - Westwind trough system. The trough system is a conduit for warm Atlantic Water to the Greenland coast, where it reaches the 79N and Zachariæ glacier tongues and cause basal melting. The Isle de France section across the Norske Trough has been repeated now since 2013. Unfortunately, there were too many large ice floes blocking the way to the 79N glacier or Diumphna Sound and hence no data was collected there this year.

Sea ice conditions were extremely good along the 78°50'N section and many of the other sections, ie. there was very little sea ice. Therefore the mooring recoveries and deployments in the EGC were very easy and fast. Despited the general low sea ice concentration in the western Fram Strait and the Greenland shelf there were still sufficient floes (however, relatively small floes) to carry out a significant amount of sea ice work. Sea ice work was also carried out on the land-fast ice where also an Ice Mass Balance (IMB) buoy was deployed at 78°43.35'N, 13°29.73'N. This IMB was initially purchased for the N-ICE campaign 2015 but now installed here. It unfortunately only transmitted data for two weeks after deployment in Fram Strait. Sampling of new (very thin) ice was carried out this year as a small pilot project by UiT (M. Johanson).

The cruise track, moorings locations, CTD/LADCP/tracer stations, and the buoy location are shown in Figure 1.

Figure 1: Cruise track of RV Lance during FS2015 in orange. The mooring positions (red and yellow), CTD stations (blue) and IMB buoy location (green) are shown according to the legend.

Sailing Log

Date	Activity (all times UTC)
Sunday,	Loading and departure
23 August 2015	20:00 Departure from Longyearbyen.
	Late departure because of a connection problem with the CTD
	cable which needed to be fixed by Kristen.
Monday,	Steam to first CTD station
24 August 2015	14:20 First CTD 0W, 78°55'N.
	Continue CTD section here to the west overnight up to 2.5°W.
Tuesday,	Start mooring recoveries, carry out CTDs in between at 78°55'N
25 August 2015	05:00 Arrival at mooring site F11 at 7 am.
	06:51 Recovery of F11 after breakfast, followed by a CTD at F11
	Steam to F12
	11:59 recovery of F12 after lunch, followed by a CTD at F12.
	Little sea ice in this region.
	16:00 Short sea-ice station after dinner (Anja, Paul, Malin, Are and
	Ruben) using the MOB.
	21:00 Continue CTD stations between 3°W and 4.5°W

XXX 1 1	
Wednesday,	Continuing CTDs and mooring work
26 August 2015	am CTDs
	10:02 Recovery F13 after lunch. Still very little ice in the region
	(even in the EGC core!). Sea ice work with MOB.
	16:45 Recovery F13b after dinner (IceCAT was lost).
	Continue CTD stations up and including 6°W overnight
Thursday,	Continuing CTDs and mooring work
27 August 2015	07:32 Recovery F14, CTD at 6.5°W
	16:14 Recovery F17 after dinner.
	Return to the CTD line and continue the section westward
	Return to the CTD line and continue the section westward
Friday,	11:00 Westernmost CTD station on the main section at 12°52'W
3 /	
28 August 2015	Head some nm southward along ice edge to localize a good and flat
	place to enter the ice for sea ice work for the rest of the day.
	13:30 Sea ice work while ship moored to the land-fast ice until
	$\pm 22:00$. Three groups departed for IMB buoy deployment,
	thickness measurements and optical work before dinner. After
	dinner continued thickness measurements and coring.
Saturday	05:00 Arrival at AWIs Belgica2-1 mooring which is recovered at
29 August 2015	06:36, followed by a CTD on the Belgica 2-1 mooring site.
_	Steam to Belgica CTD section
	14:30 Start of Belgica CTD section. Continue CTDs overnight,
	finish the Belgica section at 04:00 Sunday.
Sunday,	Steaming to Belgica2-2 mooring site for deployment, and head to
30 August 2015	IdF section
50 11ugust 2015	08:24 Deployment of AWIs Belgica 2-2
	Start steaming north towards Isle de France section but stop after
	lunch at
	10:30 - 14:30 3 to 4 hours of sea-ice work with 3 groups on the ice
	(thickness, coring and optics). Need to stop the sea ice work due to
	approach of polar bear. Continue steaming northward to Isle de
	France section.
	21:00 Start Isle de France CTDs section in the middle of the
	section, from there steam west first.
	22:00 short thin ice sampling project from Malin with the MOB
	Continue IdF CTDs
Monday	Continue Isle de France CTD section
31 August 2015	04:00 Arrival at westernmost IdF station, very strong currents and
	iceberg drifts. Return to the NE to pick up the line at IdF station 8.
	Lost of super large broken off land-fast ice floes that make the way
	back tricky. In between we do some sampling of thin ice for Malin
	with MOB and short sea-ice station for thickness (EM31) and
	tracer cores in the afternoon.
	20:00 Finalize the IdF section (we cutted off the last two shallow stations on the NE and which are 100 m door and are part the
	stations on the NE end, which are 100 m deep and are past the
	shallowest point (79 m) and do not contain AW). Head to the
	northeast to steam to the Westwind section. One more short MOB
	thin-ice sampling event around 22:00.
Tuesday,	Steaming toward the north to the Westwind section.
1 September 2015	11:00-14:00 Sea-ice station with 3 groups (thickness, coring and

	
	optics) on land-fast ice at 79.5°N, 12.5°W.
	Continue steaming north to the Westwind CTD section
	18:30 Start on the first, westernmost, Westwind CTD section
	(Antarctic Bugt Section).
Wednesday,	±07:00 Finalize western Westwind section (one station earlier than
2 September 2015	planned because of too much sea ice, and too large heavy floes
1	pushing eastward). The 'hoped for' Greenland excursion could not
	take place either.
	08:30-10:00 A short sea ice station.
	Steam eastward to head to do the Westwind 'mouth' section
	between 79.8N, 8W and 80,5N 10 W.
	15:00 Westwind mouth CTD overnight
Thursday,	07:00 Finalize Westwind mouth section, steam to the west again to
3 September 2015	-hopefully- finish the Westwind west section later today, however,
	first we encounter a lot of sea ice before we can head west.
	14:00 A three-hour long sea-ice station for thickness, cores and
	optical work
Eriday	04.00 Start with the 2rd (middle) Westwind section
Friday,	04:00 Start with the 3rd (middle) Westwind section
4 September 2015	(Nordostrundingen) at 80.5°N, 11°W. 12 stations, first northward,
	then heading southward. Finalizing CTDs on this 3rd Westwind
	section and steam southward to mooring site F17 overnight.
Saturday	Start mooring deployments, and additional sea ice stations
5 September 2015	05:00 Arrival at mooring site F17. Start preparing.
	07:05 Deployment F17 after breakfast. Continue prep F18.
	08:25 Deployment of F18
	10:30 Look for ice floe after lunch for a 2-hour sea ice station
	(thickness and coring only). Prep for F14 deployment.
	14:03 Deployment F14
	Wait and drift until next day at roughly 6°W.
Sunday,	06:00 Repeat CTD (incl. tracers) at 6°W and 5.5°W. Prep for F13B
6 September 2015	(with IceCAT).
	10:59 Deployment of F13B.
	12.30 Moor the ship to the ice for a 2.5 hour sea ice station incl.
	thickness, cores and optics. We stay moored on the floe until
	dinner. Then steam to and take repeat CTD at 5°W in the evening
	to repeat tracers and optics.
	Drift overnight on location.
Monday,	04:00 Start search for good floe for ice work before breakfast,
7 September 2015	moor ship to floe at 6 am.
	06:30-08:30 Sea ice station (thickness, coring and optics). Steam to
	north of F13 mooring site to start deployment after lunch.
	10:26 Deployment of F13. Little sea ice but strong drift.
	Lifting gear and anchors from hold after which we steam to do
	repeat CTD at 4.5°W, followed by a repeat CTD cast and optical
	station at 4°W. We repeat the whole (deep) CTD cast here too since
	we found AW of 7° C on the previous (4.5°W) station.
	Drift overnight on location.
Tuesday,	04:00 Start steaming west to come into Polar Water again for a
8 September 2015	shallow CTD cast to collect water in 100 m for Alexey's bleaching
	shares of the cust to concert water in foo in for thexey's of defining

	· ,
	experiment.
	06:45-08:45 Tie to a small floe for one last sea ice station (optics,
	one core and melt pont measurements).
	09:00 A short MOB thin ice sampling effort, after which we steam
	to mooring site F12.
	12:17 Deploy F12. Dead calm sea and no sea ice so very easy
	deployment, ship can stay on position. During late afternoon and
	evening we take repeat CTD and optics at 3°W and at 2°W.
	Drift overnight on location.
Wednesday,	04:30 Start steaming to mooring site F11.
9 September 2015	08:32 Deployment of F11. Very little sea ice, westward drift, ship
	can manouver and stay on position.
	10:22 After lunch we recover F10-12 from AWI which has been in
	the water for 3 years now. No to little ice. Very easy recovery.
	We head back to the CTD line at 78°55'N and pick up CTDs at 0°
	to continue overnight until we get to the BPR site at $\pm 5.5^{\circ}E$
	Thursday morning.
Thursday,	CTDs between $2^{\circ}E$ and $5^{\circ}E$ were continued early am.
10 September 2015	09:15 BPR site (from C. Peralta Feriz (APL, UW)). We attempted
	to retrieve data from it but gave up after one hour. The same
	problem occurred as last year, we could see it, and range it but data
	transfer failed despite turning of the engine, echo sounder and
	VMADCP.
	10:40 CTDs from 6°W to 9°W continued up until almost midnight.
	15:30 "End-of-cruise" dinner (with a short flute concert from
	Anna)
Friday,	Steaming back to LYR with a short stop at Poolepynkte to do a
11 September 2015	little walrus sightseeing. Weather and visibility is too bad to go out
	in zodiacs. One walrus spotted. Continue steaming to LYR.
	14:50 Arrival in Longyearbyen (town dock)
	16:00 Packing
Saturday,	09:00 Packing and unloading
12 September 2015	

Moorings Recovered

Mooring	Position	Depth	Date and time	Instrument	Serial #	Instrument depth
E11.1		(m)	(UTC)	IDC	510(0	(m)
F11-16	N 78° 49.179,	2447	Deployed:	IPS SDE27	51062	51
	W 003° 02.685'		09 September	SBE37	3490	53
			2014 14:23	ADCP	17461	57
			D 1.05	SBE37	4702	274
			Recovered: 25	RCM9	1324	280
			Aug 2015, 06:51	SBE37	3552	1530
				RCM11	494	1533
				SBE37	8821	2433
				RCM8	10071	2436
F10 17	21.500.40.1.501	1000		AR861	287	2438
F12-16	N 78°49.158'	1832	Deployed:	IPS approx	51167	55
	W 004° 01.423'		08 September	SBE37	3489	57
			2014 14:02	ADCP	17462	61
				SBE37	4837	274
			Recovered: 25	RCM9	884	277
			Aug 2015, 11:59	SBE37	3554	1477
				RCM11	235	1480
				SBE37	8822	1820
				RCM11	228	1823
				AR861	182	1825
F13-16	N 78° 50.133',	1015	Deployed:	IPS	1047	51
	W 005° 00.241'		07 September	SBE37	7056	53
			2014 15:37	ADCP	16831	58
				RCM9	1175	60
			Recovered: 26	AURAL	N/A	77
			Aug 2015, 10:02	SBE37	12232	147
				SBE37	3993	247
				RCM9	1327	250
				SBE37	3551	1000
				RCM11	561	1003
				AR861	053	1005
F13B-1	N 78° 50.167',	517	Deployed:	SBE37-IM	11435	27
	W 005° 31.040'		06 September	ICEBOX	N/A	54
			2014 19:28	SBE37	12234	55
				SBE37	12233	104
			Recovered: 26	ADCP	707	106
			Aug 2015, 16:45	SBE37	10295	206
				AR661	291	510
F14-16	N 78° 48.859',	271	Deployed: 06	IPS	51127	58
	W 006° 30.058'		Sept 2014 12:59	SBE37	3492	62
			-	ADCP	16876	66
			Recovered: 27	SBE37	3992	257
			Aug 2015, 07:32	RCM9	1046	260
				AR861	409	264
F17-11	N 78° 50.381',	225	Deployed:	SBE37-IM	11434	25
	W 008° 07.530'		05 September	SBE16	6693	53
			2014 21:35	ICEBOX	N/A	54
				SBE37	2962	80
			Recovered: 27	ADCP	7636	105
			Aug 2015, 16:14	SBE16	6694	109
				SBE37	7062	213
				AR661	110	218
Belgica2-1	N 77° 59.85',	250	Deployed:	SBE37 (AWI)	10941	50
AWI/NPI	W 14° 18.61'		14 June 2014	DL7 (NPI)	1649	150-200
			07:20	LR ADCP (AWI)	3813	240
					5015	<u>∠</u> -70

			Recovered: 29	IXSEA (AWI)	219	246
			Aug 2015, 06:36	IXSEA (AWI)	365	246
F10-12	N 78° 49.87',	2716	Deployed:	ARGOS	169	50
AWI	W 02° 03.46'		30 June 2012	SBE37	9490	57
			18:01	ADCP	14970	248
				RCM8	10004	252
			Recovered:	SBE37	9491	254
			09 Sep 2015,	Holgiphone	H21	550
			10:22	RCM8	9201	755
				RCM8	9786	1512
				RCM11	296	2708
				IXSEA	743	2711
				IXSEA	238	2711

Table 1: Moorings recovered during FS2015.

Notes on the 2014-2015 mooring deployment: (malfunctions marked in red in table above)

- ☐ The dsu unit from the DL7 string (SN 1649) on Belgica2-1 was not readable. It will be send to Aanderaa for check/data recovery. One of the C sensors on the string was popped from the connection, leakage/corrosion..?
- The IPS SN 1047 at F13 failed to start. No data. The other three have worked well.
- RCM8 SN 10071 on bottom of F11 appeared to have failed (direction) looking at it in 5059 dsu reading program. However, exporting it as .Asc and processing in Matlab it looks fine. Exported data looks OK while dsu did not.
- ☐ The Aural instrument (whale sound recorder) had apparently not worked, never started or failed to store data (Heidi 18/9/15). Need to obtain details from Kristen

Moorings deployed

Mooring	Position	Depth	Date and time	Instrument	Serial #	Instrument depth
		(m)	(UTC)			(m)
F11-17	N 78° 48.992'	2450	Deployed:	IPS	51062	54
	W 03°01.508'		9 Sept 2015	SBE37	7054	56
			08:32	ADCP	17461	60
				SBE37	3996	299
				RCM9	1049	303
				SBE37	7061	1553
				RCM11	538	1556
				SBE37	8226	2456
				RCM Seaguard	834	2459
				AR861	499	2463

F12-17	N 78° 49.148'	1831	Deployed:	IPS	51127	55
F12-1/	W 04° 00.900'	1831		SBE37	7055	
	W 04° 00.900°		8 Sept 2015			57
			12:17	ADCP	17462	61
				SBE37	3994	274
				RCM9	836	277
				SBE37	10295	1477
				RCM11	556	1480
				SBE37	8227	1820
				RCM11	117	1823
				AR861	500	1825
F13-17	N 78° 50.164'	1015	Deployed:	IPS	51064	55
	W 05° 00.086'		7 Sept 2015	SBE16	7353	58
			10:26	ADCP	16831	61
				AURAL	-	76
				SBE37	3995	152
				SBE37	7060	249
				RCM9	1326	252
				SBE37	13504	1002
				RCM11	345	1007
				AR861	743	1009
F13B-2	N 78° 50.182'N	520	Deployed:	SBE37-IM	13506	26
1150 2	W 05° 30'.886'	520	6 Sept 2015	ADCP	707	54
	W 05 50.000		10:59	ICEBOX	N/A	55
			10.59	SBE37-IM	13507	55 56
				SBE37-INI SBE37	7059	102
					883	102
				RCM seaguard		
				SBE37	13505	205
				AR661	410	513
F14-17	N 78° 48.866'	271	Deployed:	IPS	51127	58
	W 006° 30.033'		5 Sept 2015	SBE37	7058	62
			14:03	ADCP	16876	66
				SBE37	7057	257
				RCM9	1359	261
				AR861	568	265
F17-12	N 78° 50.167'	225	Deployed:	SBE16	7212	55
	W 08° 05.010'		5 Sept 2015,	ADCP	7636	106
			07:05	SBE16	7339	108
				AR661	?	218
F18-10	N 78° 49.290',	218	Deployed:	DL7 (new string)	1593	57-107
- •	W 08° 04.722'	-	5 Sept 2015,	AR861	291	211
			08:25			
Belgica2-2	N 77° 59.844',	250	Deployed:	SBE37 (AWI)	2384	71
AWI	W 14° 18.552'	- · · ·	30 August	SBE37 (AWI)	2087	130
1 1 T T	W 17 10.332		2015, 08:24	SBE37 (AWI) SBE37 (AWI)	233	190
			2013, 00.24	ADCP (AWI)	17971	241
					235	241 247
				SBE37 (AWI)		
				IXSEA (AWI)	531	247
	Maarin a 1		EC2015 C 1	IXSEA (AWI)	566	247

 Table 2: Moorings deployed during FS2015. Colors indicate different instrument types.

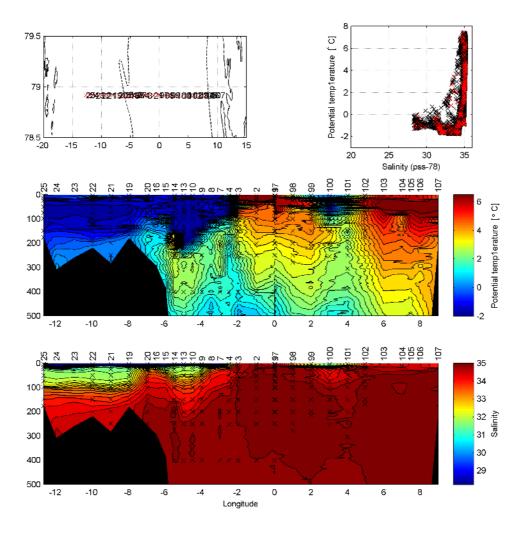
CTD Measurements

The CTD used as an SBE911+ unit. Niskin bottles were closed using the bottle fire command within the Sea-Bird acquisition software so that a .bl file was created for each deployment when bottles were fired.

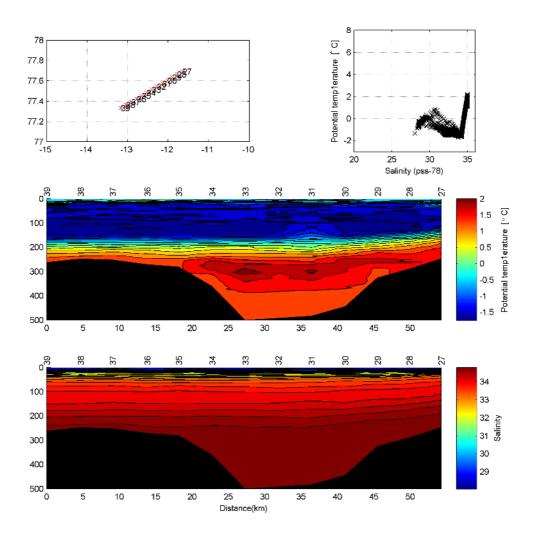
NMEA time and position information was fed to the acquisition computer and added to each scan line of the data files. Cast starting times were automatically added to the header of all data files.

A paper log sheet was completed at each CTD station. Log sheets list the depths at which bottles were fired and the samples taken from each bottle. Times and positions manually recorded on log sheets are indented as a backup in the case of a problem with the data acquisition, not a replacement for logged time and position data.

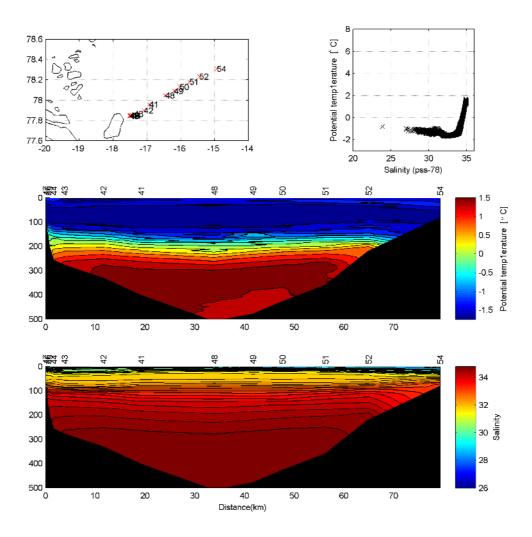
CTD Package Configuration

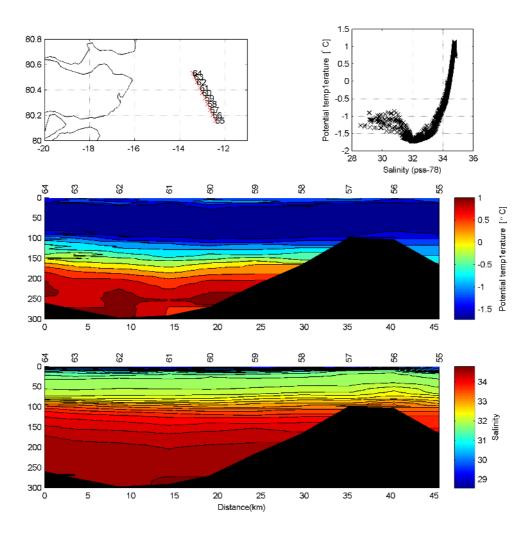

- Primary temperature sensor serial number **2400** was used for the entire cruise
- Secondary temperature sensor serial number 4052 was used for the entire cruise
- Primary conductivity sensor serial number **2056** was used for the entire cruise
- Secondary conductivity sensor serial number 3742 was used for the entire cruise
- Digiquartz pressure sensor serial number 0972 was used for the entire cruise

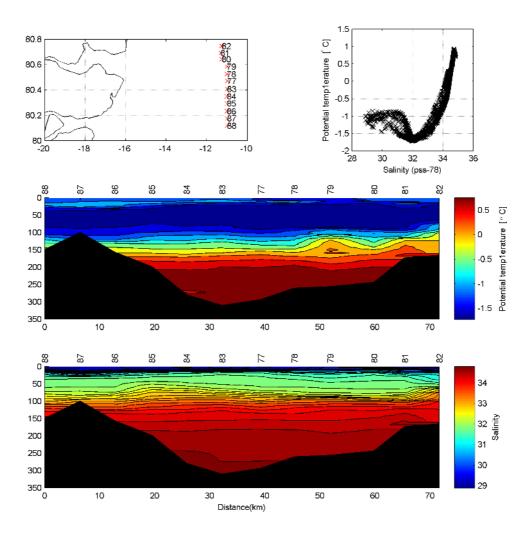
CTD sections


Open drift ice on the East Greenland Shelf allowed Lance to move rapidly along most of the planned sections. However, the Norske-Øyer fast ice barrier remained rather intact for the duration of the cruise blocking access to the planned sections in front of the 79N glacier and along Dijmphna sound. The following 6 sections were completed:

- 1. Main Fram Strait Section: An east-west section along the Fram Strait mooring array line at 78° 50 N, which is repeated annually. During Fram Strait 2015, stations were completed between 005 E and 012 W. Station spacing was 20 km for most of the transect and 10 km in the cores of the inflow and outflow. Figure 2 shows the data collected along the Main Fram Strait Section.
- 2. Belgica (Belgica Trough) Section: A high-resolution (4.5 km spacing) section across the Belgica Trough on the East Greenland continental shelf. This section begins at the tip of Isle de France and crosses crossing the complete trough. Figure 3 shows the data collected along the Norske Trough section.
- **3.** Isle de France (Belgica Trough) Section: A high-resolution (6.5 km spacing) section across the Belgica-Norske Trough on the East Greenland continental shelf close to Isle de France. This section begins at the tip of Isle de France and crosses the complete trough. The section was completed in August 2013, August 2014 and August 2015. Figure 4 shows the data collected along the Norske Trough section.


- 4. Antarctic Bugt (Westwind Trough) Section: A high-resolution (5 km spacing) section across the Westwind Trough on the East Greenland continental shelf close to Dijmphna Sound. This section did not extend across the complete trough as large peices of broken up fast ice blocked access to the northernmost part of the section. Figure 5 shows the data collected along the Westwind Section.
- **5.** Nordostrundingen (Westwind Trough) Section: A high-resolution (6.5 km spacing) north-south section across the Westwind Trough on the East Greenland continental shelf at 11 degrees west. Figure 6 shows the data collected along Westwind Trough Section 2.
- 6. Westwind Mouth (Shelf Break) Section: A high-resolution (8 km spacing) section across the mouth of the Westwind Trough close to where it meets the East Greenland shelf break. Figure 7 shows the data collected along Westwind Trough Section 2.


Figure 2: Map showing the location of CTD stations along the Main Fram Strait Section (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.


Figure 3: Map showing the location of CTD stations along the **Belgica Section** (top left panel); (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

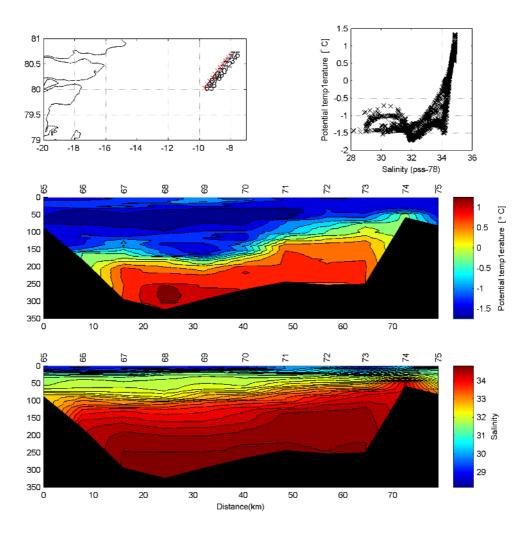
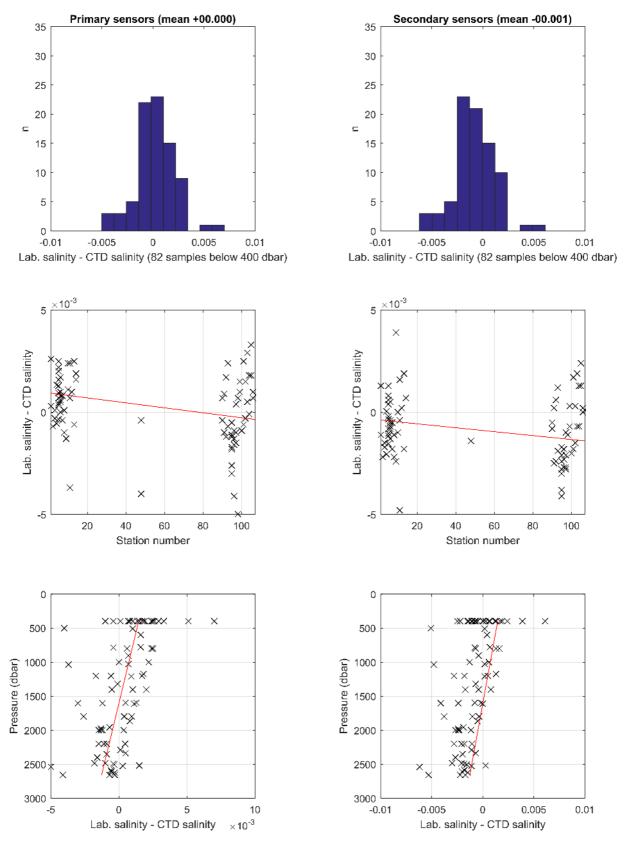

Figure 4: Map showing the location of CTD stations along the **Isle de France Section** (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 5: Map showing the location of CTD stations along the Antarctic Bugt Section (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 6: Map showing the location of CTD stations along the **Nordostrundingen Section** (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 7: Map showing the location of CTD stations along the **Westwind Mouth Section** (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

CTD Sensor Calibration


Water samples for laboratory salinity measurement were collected at most CTD stations. At stations where tracer samples were collected, salinity samples were collected at standard depths of 5, 15, 25, 50, 75, 100, 150, 200 and 300 dbar, plus two samples from the bottom of the water column. At stations where tracer samples were not collected, samples for salinity measurement were collected from deep parts of the water column where the salinity gradient was shallow. Deep regions provide the best data for conductivity sensor calibration as the water trapped in the Niskin bottles is most similar to that sampled by the CTD.

Salinity samples were analysed on broad Lance using a Guildline Portasal portable salinometer which was standardised after every 24 measurements using IAPSO P-series standard seawater.

Comparison of laboratory salinity measurements and CTD-salinity measurements revealed offsets of < 0.001 psu for both the primary and < 0.002 for the secondary sensor groups (Figure 8). The standard deviation of measurements was < 0.005 psu for both sensor groups. These values are within the expected range for a pumped CTD system.

Figure 8 suggests a minor drift in the calibration of both primary and secondary sensor groups with time during the cruise. However, the magnitude of the drift (ca. 0.001 psu) is smaller than the expected precision of the laboratory salinity measurement so this drift cannot be corrected using bottle data. A minor depth dependant offset of ca 0.002 is apparent in both sensor packages, the magnitude of the depth-dependant offset is also smaller than the expected precision of laboratory salinity measurements so this cannot be corrected.

Both sensor groups on the CTD performed very well during the cruise. As a result no laboratorybased calibration offset will be applied to the CTD data.

Figure 8: Plots showing the difference between laboratory salinity measurements and the primary (left hand panels) and secondary (right hand panels) sensor groups on the CTD. Only points deeper than 400 m are considered.

Tracer Sampling

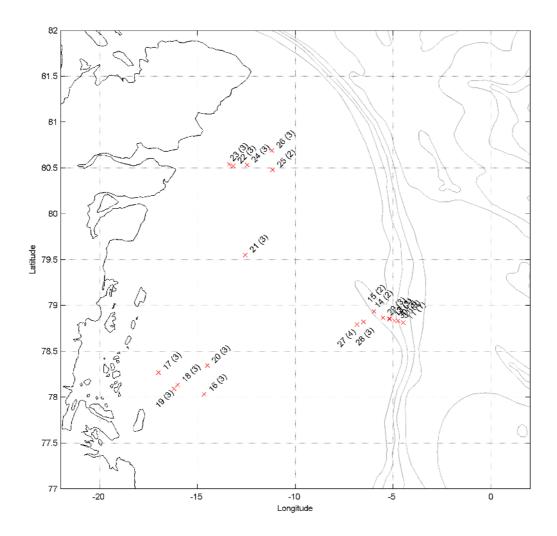
Water samples were collected at standard pressures of 5, 15, 25, 50, 75, 100, 150, 200, 250, 400 dbar and at the bottom of each cast along the main Fram Strait section (Figure 2).

Samples were collected in the following order:

- 1. DIC & Total alkalinity
- 2. CDOM (Filtered)
- 3. Nutrients
- $4. \ \delta^{18}O$
- 5. Salinity
- 6. Particulate light absorption

Laboratory salinity analysis: Samples for laboratory salinity analysis were collected from all Niskin bottles. When the surface of the water column is strongly stratified, the salinity of water trapped in Niskin bottles can be significantly different from that measured by the conductivity sensor at the bottom of the CTD package, which is approximately 1 meter deeper then the top of the Niskin bottles. Independent laboratory salinity measurements give salinity measurements which correspond exactly to the other tracer measurements made from Niskin bottles. Laboratory measurements were made with a Guildline Portasal 8400b salinometer, which was standardized every 24 samples using P-series seawater supplied by OSIL.

Oxygen isotope ratio analysis and dissolved nutrient analysis: Samples for δ^{18} O isotope ratio analysis and dissolved nutrient analysis were collected at the locations listed in Appendices 1 and 2. Note that samples for δ^{18} O and dissolved nutrients were always collected concurrently.


Coloured dissolved organic matter (CDOM): Samples for CDOM analysis were collected at the locations listed in appendix 3. Samples for δ^{18} O isotope ratio analysis and dissolved nutrient analysis were always collected when CDOM samples were collected.

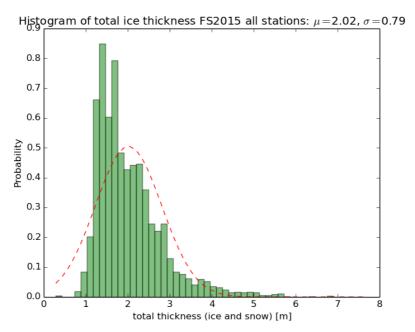
Total alkalinity and dissolved inorganic carbon ($A_T \& DIC$): Samples total alkalinity and dissolved inorganic carbon analysis were collected at the locations listed in Appendix 4. Samples for $\delta^{18}O$ isotope ratio analysis and dissolved nutrient analysis were always collected when Total Alkalinity and Dissolved Inorganic Carbon samples were collected.

Niskin bottle operations: The rubber bands which hold the Niskin bottles closed were in fair condition at the beginning on the cruise and only one bottle required attention during the cruise after it's rubber band became slack.. The rubber o-rings retaining the taps of several Niskin bottles required replacement at the beginning of the cruise. After replacing the rubber o-rings all the Niskin bottles remained in good working order throughout the cruise.

Tracer samples of sea ice: Ice cores for tracer analysis were collected at most sea ice stations as well as from several patches of thin ice (0.5-10 cm thick) accessed using a small boat. Cores were

collected in triplicate so as to allow some assessment of the variability of properties at each site sampled. Loose surface snow was removed before coring. Cores were stored in air-tight buckets and melted within 48 hours of collection, after which the melt water was sub-sampled. Cores were handled with latex or nitrile gloves and an all-plastic syringe was used to extract water from buckets for CDOM sampling. Figure 9 shows the location of sites where ice cores for tracer analysis were collected.

Figure 9: Locations of sea ice floes (or regions of thin ice) where cores were collected for tracer analysis. The number of cores collected from at each site is shown in brackets.


Sea ice measurements

The sea ice work on Fram Strait 2015 cruise was coordinated by Anja Rösel (NPI), team members were Ruben Dens (NPI), Are Bjørndal (NPI), Malin Johanson (UiT), and many volunteers from the CTD shifts. Due to the high number of people we always could go with at least 2 teams on the ice.

Altogether we made 23 sea ice stations, 8 of them were mainly for collecting and analyzing thin ice; this includes salinity, tracer, and CDOM measurements. The thin ice samples were collected from the "Man overboard-boat ". On the 15 main sea ice stations we collected ice cores for salinity and temperature analysis and for archive storage and later analysis of the microstructure. On every full sea ice station, 1 to 3 tracer cores were collected by Paul Dodd (NPI). Additionally we did ice thickness measurements with the em31instrument, accompanied by thickness

drillings, mainly for calibration purposes of the em31. The former snow layer from last winter and spring has been transformed to superimposed ice, and after a snowfall event on 25.8.2015 we only had this thin fresh snow layer of 2-4 cm on the ice. The results of all thickness measurements with the em31 instrument (10 stations) are shown in Figure 2: The average thickness of the ice cover of the visited stations was around 2 m, the median shows a shift to the thinner ice (1,5m). Please note that these observations can have an offset from the ice situation in reality, since we visited for safety reasons only reasonable thick and stable ice floes.

At the beginning as at the end of the cruise we had technical problems with both of the computers for the em31. We could solve the problems partly, but for this reasons the collection of em31 data especially in the beginning of the cruise was limited.

On 7 stations, optical measurements were made by Alexey Pavlov (NPI), Piotr Kowalczuk, Anna Raczkowska, and Monika Zablocka, (all from IOPAN).

On the last 4 ice stations we had a closer look at the melt ponds since they were dominating the visited ice floes. We found fresh water ponds - they were in all cases discrete ponds with a thin layer of snow on the frozen surface – and saline ponds: they were mostly linked and had in most cases a bare, salty, frozen surface. We took salinity, depth, and temperature measurements of the ponds and their surroundings.

During the entire cruise sea ice observations were made every 3 hours and entered in the ASISST database. Additionally, 2 Radar digitizing systems (from HZG Geesthacht, Germany, and FMI, Finland) were running and recording the ship's radar signal.

Date	Day	#	time (UTC)	lat (start) deg min N	lon (start) deg min W	Task	weather/conditions
23.08.2015	Sun					loading departure LYR 10 pm	
24.08.2015	Mon					Transit cloudy/foggy	
25.08.2015	Tue	station 1	18:45	78 40.37	-4 34.065	em31 calibration, coring	light snow fall
26.08.2015	Wed	station 2	12:59	78 50.849	-4 10.881	EM31 calib, Coring, snow	overcast, foggy in the evening
		station 3	13:30	78 51.044	-5 10.868	EM31 calib, Coring	evening
27.08.2015	Thur	station 4	09:01	78 48.928	-6 30.615	EM31 calib, Coring, snow	
		station 5	12:08	78 49.287	-6 30.607	EM31 calib, Coring	
28.08.2015	Fri	station6	14:20	78 43.35	-13 29.73	Land-fast ice: Buoy deployment, <mark>optics</mark> , coring	calm
29.08.2015	Sat					no ice station	
30.08.2015	Sun	station 7	11:20	78 01.561	-14 39.906	snow, coring, em31, optics	compact ice coverage
		station 8	22:11	77 56.163	-16 59.447	thin ice station	
		station 9	11:48	78 05.47	-16 12.123	thin ice	
31.08.2015	Mon	station 10	12:42	78 07.922	-16 01.692	em31, tracer coring, em31 calibration	calm overcast
		station 11	21:49	78 20.671	-14 29.351	thin ice	
01.09.2015	Tue	station 12	11:29	79 32.949	-12 33.366	em31&MP, coring, calibration, optics	overcast, snowfall
		station 13	13 07:18 80 32.332 -1		-13 23.22	thin ice	
02.09.2015	Wed	station 14	08:50	80 31.296	-13 10.282	em31, calib, coring	
		station 15	13:53	80 31.865	-12 27.564	thin ice	
03.09.2015	Thur	station 16	14:34	80 28.292	-11 09.603	em31, calib, coring, optics	
04.09.2015	Fri	station 17	11:12	80 41.374	-11 11.59	thin ice	
05.09.2015	Sat	station 18	11:20	78 47.75	-6 50.171	melt pond, em31, calibration, coring	sunny

An overview of all visited stations and the performed tasks is shown in Table 3.

		station 19	07:25	78 55.893	-5 59.201	thin ice	overcast, light fog
06.09.2015 Sun		station 20	12:56	78 52.169	-5 30.37	melt pond, em31, coring, <mark>optics</mark>	overcast, clearing up during station
07.09.2015	Mon	station 21	07:42	78 49.47	-4 55.454	melt pond, em31, coring, <mark>optics</mark> , thickness transect through ponds	snowfall, windy (15-20 kts)
08.09.2015	Tue	station 22	07:08	78 50.263	-4 45 683	melt ponds, em31, thickness transect, optics	sunny in the beginning, later cloudy
		station 23	09:03	78 49.097	-4 41.657	thin ice	calm

Table 3: overview of sea ice stations during FS2015

Newly formed sea ice

In addition, a total of eight sea ice stations, targeting newly formed ice, were carried out. The stations included frazil ice, grease ice, nilas and rafted ice. They are numbered together with the thicker sea ice stations. The stations were planned to overlap with high resolution satellite images from Radarsat-2. At each station three sites were chosen for sampling to account for variabilities within the area. The ice thickness ranged from 0.5 to 6 cm. The mean water temperature was around -1.0°C. The new sea ice station info is given in Table 4 below, these correspond with the light blue rows in Table 3.

Station	Date	Time	Latitude	Longitude	Thicknes	Salinity	Т	CDOM
#		(UTC)	deg min	deg min	S			
8	30.08.2015	22:19	N77 56.163	W16 59.447	Х	Х	Х	Х
9	31.08.2015	11:48	N78 05.470	W16 12.123	Х	Х	Х	Х
11	31.08.2015	21:59	N78 20.616	W14 29.667	Х	Х	Х	Х
13	02.09.2015	06:58	N80 32.332	W13 23.220	Х	Х	Х	Х
15	02.09.2015	14:00	N80 31.886	W12 27.501	Х	Х	Х	Х
17	04.09.2015	11:12	N80 41.374	W11 11.590	Х	Х	Х	Х
19	06.09.2015	07:25	N78 55.893	W05 59.201	Х	Х	Х	Х
23	08.09.2015	09:03	N78 49.097	W04 41.657	Х	Х	Х	Х

Table 4: overview of newly formed sea ice stations during FS2015

A typical new sea ice station

CDOM-Heat Optics work

The objective of the work of CDOM-Heat project during the Fram Strait 2015 R/V Lance cruise was to collect IOP (Inherent Optical Properties) data profiles across the strait. In addition in collaboration with the CTD and tracer sampling program onboard Lance to collect water samples for characterization of optical properties of the seawater, namely dissolved and particulate absorption.

Four CDOM-Heat project participants participated in the cruise, P. Kowalczuk (IOPAS), A. Raczkowska (IOPAS), M. Zabłocka (IOPAS) and A. Pavlov (NPI) were responsible for operating the IOP instruments and collecting water samples for dissolved and particulate absorption. The optical group also performed IOP measurements on the edge of ice floe. In total measurements on 42 full stations (IOP, particle abs, dissolved abs) and 7 ice edge station (IOP) were undertaken (Table 5).

STATION #	DATE	TIME	LAT	LON	IOP	Particle Abs	Dissolved Abs	Ice edge station
1	2015-08- 24	16:23	78 55.00 N	00 00.54 W	\checkmark		\checkmark	
3	2015-08- 24	23:27	78 55.00 N	02 00.01 W	\checkmark		\checkmark	
7	2015-08- 25	23:26	78 55.00 N	03 00.05 W	\checkmark	V	N	
9	2015-08- 26	05:55	78 55.00 N	04 00.21 W	\checkmark	V	V	
13	2015-08- 26	19:00	78 55.00 N	05 00.09 W	\checkmark		V	
15	2015-08- 26	23:43	78 55.00 N	06 00.12 W	\checkmark		V	
19	2015-08- 27	17:55	78 55.00 N	08 00.18 W	\checkmark		V	
20	2015-08- 27	20:55	78 55.00 N	07 00.21 W	\checkmark		V	
21	2015-08- 28	00:41	78 55.00 N	09 00.11 W	\checkmark		V	
22	2015-08- 28	02:48	78 55.00 N	10 00.60 W	\checkmark		V	
23	2015-08- 28	04:55	78 55.00 N	11 00.26 W	V	V	V	
24	2015-08- 28	08:00	78 55.00 N	12 00.21 W	\checkmark		V	
25	2015-08- 28	10:24	78 55.00 N	12 42.28 W	\checkmark		V	
ice station 6	2015-08- 28	15:36	78 43.33 N	13 29.90 W	\checkmark			\checkmark
ice station 7	2015-08- 30	11:50	78 01.54 N	14 40.07 W	\checkmark			V
41	2015-08- 30	21:05	77.57.00 N	17 04.00 W	\checkmark	$\mathbf{\overline{\mathbf{A}}}$	\checkmark	
44	2015-08-	02:11	77 50.98 N	17 26.63 W	\checkmark	\checkmark	\checkmark	

	31	1						
	2015-08-							
46	31	03:31	77 50.70 N	17 29.84 W	\checkmark			
48	2015-08- 31	09:03	78.02.00 N	16 27.00 W	\checkmark	\checkmark		
49	2015-08- 31	11:21	78 05.46 N	16 11.95 W	\checkmark			
54	2015-08- 31	19:25	78 18.50 N	14 55.73 W	\checkmark	V	\checkmark	
ice station 12	2015-09- 01	11:18	79 32.95 N	12 33.32 W	\checkmark			V
58	2015-09- 01	20:32	80 17.38 N	12 45.91 W	\checkmark	V	\checkmark	
60	2015-09- 01	22:38	80 22.55 N	12 59.95 W	\checkmark	V	\checkmark	
62	2015-09- 02	00:56	80 27.69 N	13 14.12 W	\checkmark	\checkmark	\checkmark	
64	2015-09- 02	06:15	80 32.14 N	13 24.19 W	\checkmark		\checkmark	
67	2015-09- 02	21:14	80 09.96 N	09 21.10 W	\checkmark		\checkmark	
69	2015-09- 02	23:46	80 17.99 N	09 00.45 W	\checkmark	V	\checkmark	
71	2015-09- 03	02:00	80 26.08 N	08 40.32 W	\checkmark	V	\checkmark	
73	2015-09- 03	04:23	80 34.04 N	08 19.20 W	\checkmark	V	\checkmark	
ice station 16	2015-09- 03	14:01	80 28.29 N	11 09.09 W	\checkmark			\checkmark
79	2015-09- 04	06:44	80 35.22 N	10 57.97 W	\checkmark	V	\checkmark	
82	2015-09- 04	10:12	80 44.99 N	11 16.99 W	\checkmark	V	\checkmark	
83	2015-09- 04	13:51	80 24.50 N	10 59.78 W	$\mathbf{\nabla}$	\checkmark	\checkmark	
86	2015-09- 04	16:18	80 14.00 N	10 59.64 W	$\mathbf{\nabla}$	•	\checkmark	
ice station 20	2015-09- 06	12:07	78 51.84 N	05 30.74 W	\checkmark			\checkmark
91	2015-09- 06	17:20	78 55.00 N	05 00.31 W	\checkmark	\checkmark	\checkmark	
ice station 21	2015-09- 07	06:38	78 50.26 N	04 57.60 W	\checkmark			\checkmark
93	2015-09- 07	17:36	78 55.00 N	04 01.16 W	\checkmark		\checkmark	
ice station 22	2015-09- 08	06:56	78 50.35 N	04 45.74 W	\checkmark			\checkmark
95	2015-09- 08	16:27	78 55.00 N	03 00.15 W	\checkmark	\checkmark	\checkmark	

96	2015-09- 08	20:05	78 55.00 N	02 00.01 W	\checkmark		\checkmark	
97	2015-09- 09	16:23	78 55.00 N	00 02.04 W	\checkmark	V	\checkmark	
99	2015-09- 09	22:58	78 55.00 N	02 00.04 E	\checkmark	\checkmark	\checkmark	
101	2015-09- 10	04:55	78 55.00 N	04 00.08 E	\checkmark	V	V	
103	2015-09- 10	12:34	78 55.00 N	05 58.84 E	\checkmark	V	V	
104	2015-09- 10	16:50	78 55.00 N	07 00.49 E	\checkmark	V	V	
106	2015-09- 10	20:15	78 55.00 N	08 00.49 E	\checkmark	V	V	
107	2015-09- 10	22:27	78 55.00 N	09 00.49 E	\checkmark	\checkmark	\checkmark	

Table 5. List of IOP profiles, particulate absorption, dissolved absorption and ice edge measurements carried out during the FS2015 cruise

Left: Optical measurements from the ice edge.

Water sampling

Water samples were collected in the upper 100 m for particulate and dissolved absorption. Samples for CDOM were collected using gravity filtration from the Niskin bottles on the ships rosette, and a Millipore Optical XL filter cartridge with a pore size of 0.2 microns. Filter cartridge was rinsed with MilliQ water prior to first use, and extensively flushed with sample water during sampling. Samples were collected into 40 ml amber glass vials (EPA type), which had been combusted at 450 °C overnight, and caps and liners acid soaked and rinsed with MilliQ. Samples were stored at +4 °C in dark until analysis in the home lab.

Samples for particulate absorption (listed in the table 1) were collected from the same casts. 5L plastic carboys were filled with sample bottles from the Niskins on the rosette of the ship's CTD. Samples were filtered onto Whatman GF/F glass fiber filters using low vacuum. Samples were then stored directly at -80 °C, and shipped to the homelab in a dryshipper with liquid nitrogen after the cruise, where analysis will take place.

In-situ measurements

At all stations inherent optical properties were measured *in situ* with several instruments: (1) an instrument package consisting of an ac-9*plus* attenuation and absorption meter (WET Labs Inc., USA), a Wetstar CDOM fluorometer (WET Labs Inc., USA), a MicroFlu-Chl chlorophyll fluorometer (TrioS GmbH, Germany), and a Seabird SBE 49 FastCAT Conductivity-Temperature-Depth probe (Seabird Electronics, USA.). The data stream from all the instruments was merged with DH4 sensor interface module (WET Labs Inc.) and transferred in real-time to the deck unit and PC; (2) yhe laser in situ scattering and attenuation meter LISST 100X (Sequoia Instruments, Inc., USA); and (3) a Hyperspectral Spherical-Cavity Absorption Meter (a-Sphere, HOBI Labs).

The ac-9*plus* measures the absorption and beam attenuation coefficients at nine wavelengths (412, 440, 488, 510, 532, 555, 650, 676 and 715 nm). Scattering (*b*) was determined by subtraction of absorption from attenuation. CDOM fluorescence was measured with a MicroFlu-CDOM fluorometer (TRIOS GmbH,Germany) and WETStar fluorometer (WET Labs inc.), which is suitable for in situ measurements without the prior filtration of the water. The maximum of the excitation light spectrum is 370 nm and maximum emission of the light detector is set at 460 nm. The TRIOS MicroFlu-Chla fluorometer has the same functional features the one for CDOM measurements except different excitation (470 nm) and emission (685 nm), wavelengths.

The laser in situ scattering and attenuation meter LISST 100X (Sequoia Instruments, Inc., USA) was deployed along with the Integrated Optical-Hydrological probe for measurements of particle size distribution. The key elements of this self-contained instrument are a solid-state laser diode operating at 670 nm wavelength and a specially designed 32-ring photodiode detector. Ring detector records scattering at 32 angles. The rings cover an angular range from 0.0017 to 0.34 radians, which corresponds to size ranges from 1.2 to 250 microns respectively. The cleaning, maintenance and field calibration schedule was the same as for the Integrated Optical Hydrological probe. The Hyperspectral Spherical-Cavity Absorption Meter (a-Sphere, HOBI Labs) performs spectral absorption measurements in the range 355-750 nm with 1 nm resolution.

Optical instruments for in situ measurements

Experimental work

Two 4-days CDOM (Colored dissolved organic matter) photobleaching experiments have been carried out on deck. Quartz tubes submerged in a water bath with running seawter were filled with polar water from subsurface and surface layers. Polar water was prefiltered with a Millipore Optical XL filter cartridge with a pore size of 0.2 microns. Samples were collected after 24, 48, 72, and 96 hours after the start of the experiment. Dark controls (tubes wrapped into non-transparent tin foil) were sampled after 48 and 96 hours. During both experiments an incoming spectral solar radiation was recorded with a hyperspectral radiometer TriOS RAMSES-ACC-VIS in the spectral range 320-900 nm in order to eventually normalize observed changes in CDOM optical properties to solar light exposure. All samples were stored at +4 °C in dark until analysis in the home lab

Left: Filtration in a lab.

Top: CDOM photobleaching experimental setup

VMADCP data

The vessel mounted ADCP was deployed using the S_300B4 configuration script designed by Pierre Jarracrd (4 metre bin size, standard range parameters, bottom tracking mode on). The same configuration was used for the duration of the cruise. The precise configuration can be determined from examination of the deployment script (below). Bottom tracking pings were sent during complete cruise. Sending bottom tracking pings in deep water is ineffective and slightly reduces the amount of good data water column data collected, but this approach avoids the situation where nobody remembers to turn on bottom tracking when the ship enters shallow water. During Fram Strait cruises we are principally interested in vessel mounted ADCP data collected in shallow water.

```
BEGIN RDI CONFIGURATION FILE (L300B4.CFG)
COMMUNICATIONS
ADCP
              ( ON COM2 38400 N 8 1 ) [ Port Baud Parity Databits Stopbits ]
ENSOUT
             ( OFF COM4 9600 N 8 1 ) [ Port Baud Parity Databits Stopbits ]
              ( ON
NAV
                     COM1 9600 N 8 1 ) [ Port Baud Parity Databits Stopbits
REFOUT
              (OFF COM4 4800 N 8 2 ) [ Port Baud Parity Databits Stopbits ]
              ( ON COM3 9600 N 8 1 ) [ Port Baud Parity Databits Stopbits ]
EXTERNAL
ENSEMBLE OUT
ENS CHOICE (NNNNNNN) [Vel Corr Int %Gd Status Leader BTrack Nav]
ENS OPTIONS (BOTTOM 1 8 1 8) [Ref First Last Start End]
ADCP HARDWARE
Firmware
                ( 5.46 )
                     30)
Angle
                (
Frequency
                      150)
                (
                     BEAM )
System
                (
                       4)
Mode
Orientation
                   DOWN )
               (
                ( CONCAVE )
Pattern
DIRECT COMMANDS
```

ws400 WF200 BX4000 WN064 WD111100000 WP00001 BP001 WM4 TP000010 BM4 TE00000050 EZ0000001 EPO ER0 EH0 WB2 } RECORDING Deployment (OAER) Drive 1 (C) Drive 2 (C) (YES) ADCP Average (YES) Navigation (YES) CALIBRATION 6.00 m) 0.00 0.00 deg) ADCP depth (Heading / Magnetic offset (0.00 deg Transducer misalignment () Intensity scale (0.43 dB/cts) 0.039 dB/m) Absorption (Salinity 35.0 ppt () Speed of sound correction (NO 1500.0) YES Pitch & roll compensation () 0.00 deg Tilt Misalignment () 0.000 deg Pitch Offset () 0.000 deg CONSTANT Roll Offset () Top discharge estimate () CONSTANT Bottom discharge estimate () Power curve exponent (0.1667) PROCESSING Average every (300.00 s) Depth sounder (NO) Refout_info (1 8 30.00 1.000 0 1) [bins:1st last, limit, weight, format, delaysec] External_formats (N N Y N) [HDT HDG RDID RDIE] External_decode (Y Y Y N) [heading pitch roll temp] } GRAPHICS Units (SI) Velocity Reference (NONE) (-100.0 100.0 cm/s) East_Velocity North Velocity (-100.0 100.0 cm/s)
 North_velocity
 (-100.0
 100.0
 cm/s
)

 Vert_Velocity
 (-100.0
 100.0
 cm/s
)

 Error_Velocity
 (-100.0
 100.0
 cm/s
)

 Depth
 (
 1
 61
 bin
)

 Intensity
 (
 0
 200
 dB
 (0 200 dB) (-1000 1000 m3/s) Discharge (-107681 1191414 m) (-300000 1357285 m) East Track North Track (5 bin 100.0 cm/s) (-100.0 100.0 cm/s) (0.0 deg from N) Ship track Proj_Velocity Proj_Angle Bad_Below_Bottom (NO) Line1) Line2) }

HISTORY

SOFTWARE Version (BB-TRANSECT) (2.72)

END RDI CONFIGURATION FILE

LADCP data

LACDP data was collected on nearly each CTD station and was generally of good quality. On the first two stations we found that the 'old LADCP' was installed on the CTD rosette. This LADCP head has not been upgraded with new firmware, it does not function well anymore and should not be used at any time. We changed to the newly upgraded (new firmware) LADCP which collected data all right after adding a counter weight on the CTD rosette (to avoid getting a tilt of < 22° !). As of CTD station nr. 4 LADCP data were collected OK. However, some stations gave bugs during processing, i.e on CTD station nr. 52 (LACDP / CTD times are off), 53 (no good CTD .cnv file), 65 (prepinv error, not sufficient data?), 76 (no LADCP data, station for water samples Alexey).

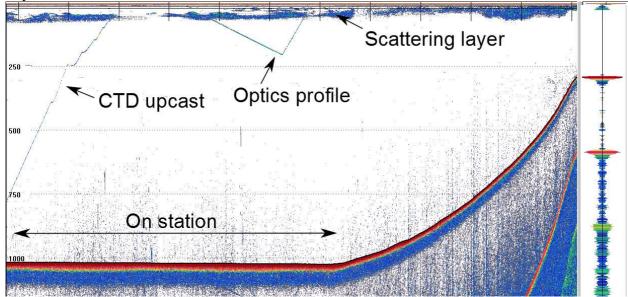
The LADCP data was processed onboard using the LDEO IX.10 software package and using 1Hz averaged CTD profiles, and excluding VMADCP data. The LACDP data was corrected for the magnetic declination using the geomag70 IGRF11 model. After the cruise the LADCP data was detided with the barotropic tidal model AOTIM. It should be kept in mind that there are large baroclinic tides on the shelf these are not taken out of the LACDP data.

The script file that was used to configure and start the LADCP is given below:

CR1 WM15 ; !!! PRIOR TO EACH CAST MAKE SURE TO RENAME THE FILE NAME BELOW TO MATCH THE CTD STATION NR!!!: RN L001_ LZ030,220 CF11111 EA0 EB0 ED0 ES35 EX00111 EZ1111101 WB1 WD111100000 WF176 WN14 WP1 WS800 WV300 SM1 SA001 SI0 SW75 TE00:00:01.00 TP00:01.00 CK CS ;Instrument = Workhorse Sentinel ;Frequency = 307200 ;Water Profile = YES ;Bottom Track = NO ;High Res. Modes = NO ;High Rate Pinging = NO ;Shallow Bottom Mode= NO ;Wave Gauge = NO ;Lowered ADCP = YES = NO :Ice Track ;Surface Track = NO = 20 ;Beam angle ;Temperature = 5.00 ;Deployment hours = 12.00 ;Battery packs = 1 ;Automatic TP = YES ;Memory size [MB] = 256 ;Saved Screen = 1 Consequences generated by PlanADCP version 2.06: ;First cell range = 10.11 m ;Last cell range = 114.11 m ;Max range = 116.10 m ;Standard deviation = 1.73 cm/s ;Ensemble size = 521 bytes ;Storage required = 21.46 MB (22507200 bytes) = 43.18 Wh ;Power usage ;Battery usage < 0.1 ; WARNINGS AND CAUTIONS: ; WM15 feature has to be installed has to be installed in Workhorse to use selected option. ; Advanced settings have been changed. _____

Echo sounder data

Jenny Ullgren, Nansen Environmental and Remote Sensing Center, Bergen


During the Fram Strait 2015 cruise, data from the scientific echo sounder (Simrad EK60) were recorded for a pilot study of acoustically reflective thermohaline fine structure at water mass boundaries. The simultaneous echo sounder and oceanographic (CTD/L-ADCP) data will be used to (a) assess the feasibility of the method in the Fram Strait and locate areas of particular interest, (b) build experience and improve sampling routines for future fieldwork, and (c) develop the processing of echo sounder data for physical oceanography.

Even a limited data 'harvest' will be helpful in addressing questions like: (1) Do we find the expected type of fine structure in the Fram Strait? Where are the best places for acoustic observation of fine structure? (2) What are the limitations? Is the data quality sufficient, if not – why not (ship noise, interference)? How should echo sounder settings be optimized? What additional measurements are needed to complement the echo sounder and CTD?

The echo sounder was set to record on 24 August 10:46 UTC and wrote raw data to file along the whole cruise track with short pauses for example when backing up data or when the navigational data stream was briefly turned off because of technical problems. The maximum ping range was adapted to fit the changing depths along the cruise track. Various settings in terms of pulse duration and ping rate were tested. The recording was ended on 11 September 05:56 UTC.

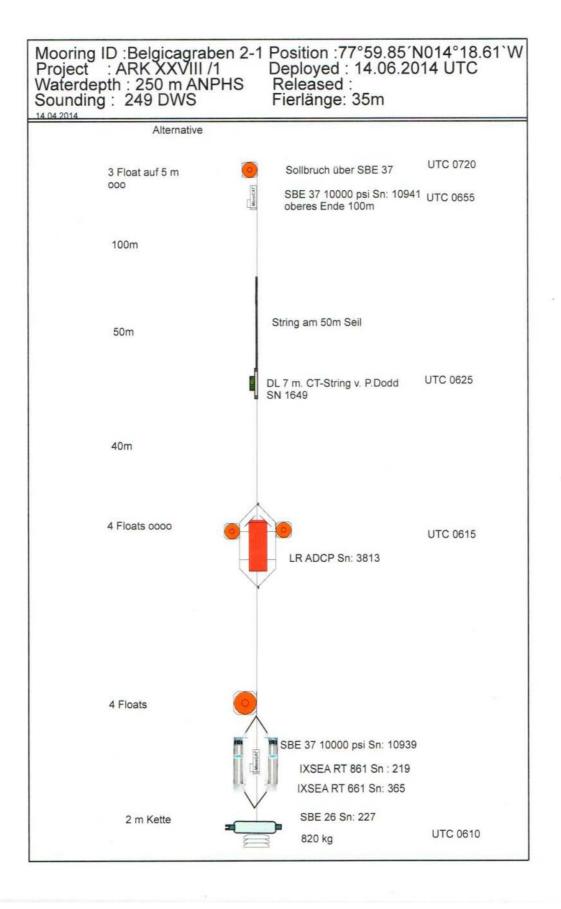
We had planned to collect data from (at least) two frequency channels: 18 and 38 kHz. However, only the 18 kHz transceiver turned out to be operational during the cruise. The other two transducers, 38 and 120 kHz, did not appear to be active. They were not simply switched off, since no transducers other than the 18 kHz were available for (re-)installation via the ER60 software. It was not clear whether the problem was related to hardware (e.g. damaged transducers), the control unit(s), or whether they had been uninstalled. The need to keep the 18 kHz working during the cruise prevented us from experimenting with the installations.

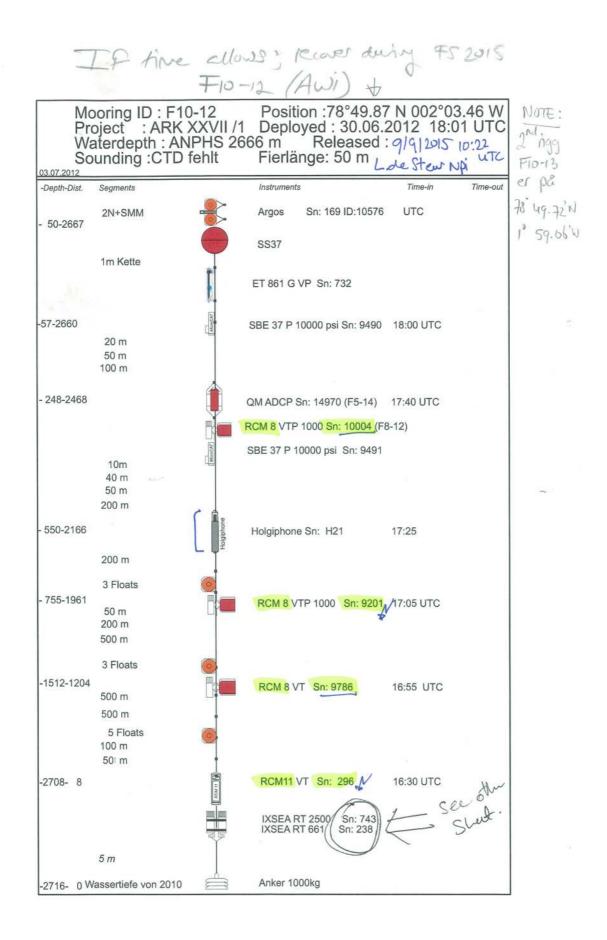
During the 18 days of operation, 22 Gb of data from the 18 kHz frequency channel were recorded, covering a range of environments from east (Svalbard region) to west (East Greenland shelf region), and from shallow (ca 100 m) to deep (ca 2500 m) water. The data will be post-processed and analyzed back ashore.

Figure 10: Screenshot of ER60 echogram from 10 September, 21:28 UTC, going from about 1000 m (left side) to 290 m (right side) water depth over the Svalbard shelf. The image captured one of the last CTD-casts of the cruise followed by an optics cast. The scattering layer likely consists of zooplankton. The wavelength of the 18 kHz signal is too long to target zooplankton individuals, but scattering can occur from thick patches of zooplankton or from larger animals like fish.

Appendix 1: Summary of CTD stations

Summary of CTD stations, salinity (S), ∂18O, nutrient, CDOM and alkalinity sampling


Stn.	Date / Time	Latitude	Longitude	S	d18O	Nutrients	CDOM	Alkalinity
1	24-Aug-2015 14:27:01 24-Aug-2015	78.9185	0.0015	yes	yes	yes	yes	yes
2	18:19:47 24-Aug-2015	78.9153	-0.99767	yes	yes	yes	no	no
3	21:23:32 25-Aug-2015	78.9148	-1.9983	yes	yes	yes	yes	yes
4	00:51:57 25-Aug-2015	78.9148	-2.5018	yes	yes	yes	no	no
5	08:51:14 25-Aug-2015	78.8252	-3.0485	yes	no	no	no	no
6	13:23:40 25-Aug-2015	78.8218	-4.0175	yes	no	no	no	no
7	21:51:32 26-Aug-2015	78.9182	-2.9993	yes	yes	yes	yes	yes
8	01:12:36 26-Aug-2015	78.9185	-3.4797	yes	yes	yes	no	no
9	04:38:23 26-Aug-2015	78.917	-4.0028	yes	yes	yes	yes	yes
10	07:29:29 26-Aug-2015	78.9212	-4.511	yes	yes	yes	no	no
11	10:56:51 26-Aug-2015	78.8347	-4.9853	yes	no	no	no	no
12	17:28:00 26-Aug-2015	78.8353	-5.5175	yes	no	no	no	no
13 14	19:07:01 26-Aug-2015 21:27:53	78.9168 78.9182	-5.0027 -5.5107	yes	yes	yes	yes	yes
14	26-Aug-2015 23:20:02	78.9192	-6.0045	yes yes	yes yes	yes yes	no yes	no yes
16	27-Aug-2015 06:14:26	78.9178	-6.505	yes	yes	yes	no	no
17	27-Aug-2015 08:12:24	78.8137	-6.4983	no	no	no	no	no
18	27-Aug-2015 16:49:22	78.8378	-8.1168	no	no	no	no	no
19	27-Aug-2015 17:41:12	78.9163	-8.0032	yes	yes	yes	yes	yes
20	27-Aug-2015 20:36:52	78.9177	-6.997	yes	yes	yes	yes	yes
21	28-Aug-2015 00:18:55	78.9163	-9.0025	yes	yes	yes	yes	yes
22	28-Aug-2015 02:29:38	78.9158	-10.0085	yes	yes	yes	yes	yes
23	28-Aug-2015 04:35:27	78.9153	-11.004	yes	yes	yes	yes	yes
24	28-Aug-2015 07:40:27	78.9187	-12.0037	yes	yes	yes	yes	yes
25	28-Aug-2015 10:08:41	78.9177	-12.7052	yes	yes	yes	yes	yes


	29-Aug-2015							
26	07:38:52 29-Aug-2015	77.9985	-14.3127	no	no	no	no	no
27	14:42:34 29-Aug-2015	77.692	-11.6437	no	no	no	no	no
28	15:17:51 29-Aug-2015	77.6647	-11.7765	no	no	no	no	no
29	16:08:34 29-Aug-2015	77.6347	-11.8953	no	no	no	no	no
30	16:51:24 29-Aug-2015	77.604	-12.0153	no	no	no	no	no
31	17:44:05 29-Aug-2015	77.5732	-12.145	no	no	no	no	no
32	18:37:03 29-Aug-2015	77.543	-12.2757	no	no	no	no	no
33	19:23:35 29-Aug-2015	77.5132	-12.404	no	no	no	no	no
34	21:39:15 29-Aug-2015	77.4825	-12.5287	no	no	no	no	no
35	22:21:02 29-Aug-2015	77.451	-12.6518	no	no	no	no	no
36	22:56:13 29-Aug-2015	77.4215	-12.7707	no	no	no	no	no
37	23:31:52 30-Aug-2015	77.391	-12.907	no	no	no	no	no
38	00:06:04 30-Aug-2015	77.3623	-13.0327	no	no	no	no	no
39	00:44:42 30-Aug-2015	77.3325	-13.168	no	no	no	no	no
40	07:29:52 30-Aug-2015	77.9973	-14.3087	no	no	no	no	no
41	20:40:12 30-Aug-2015	77.9582	-16.9293	yes	yes	yes	yes	yes
42	23:43:16 31-Aug-2015	77.8985	-17.0877	no	no	no	no	no
43	01:00:35 31-Aug-2015	77.863	-17.375	no	no	no	no	no
44	01:29:23 31-Aug-2015	77.8498	-17.4448	yes	yes	yes	yes	yes
45	02:53:23 31-Aug-2015	77.8468	-17.4802	no	no	no	no	no
46	03:16:51 31-Aug-2015	77.8457	-17.4953	yes	yes	yes	yes	yes
47	04:04:46 31-Aug-2015	77.8458	-17.5108	no	no	no	no	no
48	08:50:25 31-Aug-2015	78.0465	-16.4542	yes	yes	yes	yes	yes
49	10:59:43 31-Aug-2015	78.0913	-16.1948	no	no	no	no	no
50	12:51:47 31-Aug-2015	78.1323	-16.0272	no	no	no	no	no
51	15:20:41 31-Aug-2015	78.182	-15.7383	no	no	no	no	no
52 53	16:33:00 31-Aug-2015	78.2322 78.2663	-15.445 -15.2218	no no	no no	no no	no no	no no

	17:50:00							
54	31-Aug-2015 19:07:51	78.3085	-14.9287	yes	yes	yes	yes	yes
55	01-Sep-2015 18:22:14	80.1592	-12.413	no	no	no	no	no
56	01-Sep-2015 19:04:32	80.2018	-12.529	no	no	no	no	no
57	01-Sep-2015 19:42:19	80.2445	-12.647	no	no	no	no	no
58	01-Sep-2015 20:19:34	80.2893	-12.7638	no	no	no	no	no
59	01-Sep-2015 21:30:27	80.3337	-12.8797	yes	yes	no	yes	no
60	01-Sep-2015 22:19:03	80.376	-12.9992	no	no	no	no	no
61	01-Sep-2015 23:33:40	80.4152	-13.0972	no	no	no	no	no
62	02-Sep-2015 00:37:34	80.4617	-13.2355	no	no	no	no	no
63	02-Sep-2015 02:12:04	80.5038	-13.3527	no	no	no	no	no
64	02-Sep-2015 05:39:38	80.5332	-13.4157	no	no	no	no	no
65	02-Sep-2015 18:53:03	80.0327	-9.66	no	no	no	no	no
66	02-Sep-2015 19:58:44 02 Sep 2015	80.0973	-9.4933	no	no	no	no	no
67	02-Sep-2015 20:52:51 02-Sep-2015	80.1665	-9.3468	yes	yes	no	yes	no
68	02-Sep-2015 22:30:41 02-Sep-2015	80.2343	-9.1667	no	no	no	no	no
69	23:23:10 03-Sep-2015	80.3	-9.0077	yes	yes	no	yes	no
70	03-Sep-2015 00:55:16 03-Sep-2015	80.3677	-8.8332	no	no	no	no	no
71	03-Sep-2013 01:45:15 03-Sep-2015	80.435	-8.6717	yes	yes	no	yes	no
72	03-3ep-2013 03:04:17 03-Sep-2015	80.5028	-8.4838	no	no	no	no	no
73	03-Sep-2013 04:04:04 03-Sep-2015	80.5673	-8.3257	yes	yes	no	yes	no
74	03-3ep-2013 05:29:45 03-Sep-2015	80.634	-8.1503	no	no	no	no	no
75	06:38:22 03-Sep-2015	80.6867	-7.9893	no	no	no	no	no
76	18:45:03 04-Sep-2015	80.4952	-11.0533	yes	yes	no	yes	no
77	04:44:01 04:Sep-2015	80.4713	-10.9817	no	no	no	no	no
78	05:25:14	80.526	-11.001	no	no	no	no	no
79	04-Sep-2015 06:10:50	80.5848	-10.9995	no	no	no	no	no
80	04-Sep-2015 08:21:56	80.6425	-11.2593	no	no	no	no	no

	04-Sep-2015							
81	09:00:00 04-Sep-2015	80.692	-11.3128	no	no	no	no	no
82	09:59:22 04-Sep-2015	80.7475	-11.2618	no	no	no	no	no
83	13:30:37 04-Sep-2015	80.4083	-10.9987	no	no	no	yes	no
84	14:48:16 04-Sep-2015	80.3498	-11.0053	no	no	no	no	no
85	15:30:07 04-Sep-2015	80.2933	-11.0008	no	no	no	no	no
86	16:14:26 04-Sep-2015	80.2328	-10.9992	no	no	no	no	no
87	17:27:36 04-Sep-2015	80.1762	-10.9953	no	no	no	no	no
88	18:14:02 06-Sep-2015	80.118	-10.9943	no	no	no	no	no
89	06:42:53 06-Sep-2015	78.9217	-5.9998	yes	yes	yes	yes	yes
90	08:45:02 06-Sep-2015	78.9148	-5.4935	yes	yes	yes	no	no
91	17:17:45 07-Sep-2015	78.9145	-4.9885	yes	yes	yes	yes	yes
92	13:22:52 07-Sep-2015	78.9113	-4.4965	yes	yes	yes	no	no
93	16:37:30 08-Sep-2015	78.918	-4.0202	yes	yes	yes	yes	yes
94	06:16:59 08-Sep-2015	78.8455	-4.7502	yes	yes	no	yes	no
95	14:46:00 08-Sep-2015	78.9143	-3.0047	yes	yes	no	yes	no
96	18:54:19 09-Sep-2015	78.9192	-1.9725	yes	yes	no	yes	no
97	14:33:44 09-Sep-2015	78.9192	0.030667	yes	yes	no	yes	no
98	18:12:32 09-Sep-2015	78.9163	0.998	yes	yes	yes	no	no
99	21:14:59 10-Sep-2015	78.9175	2.0078	yes	yes	yes	yes	yes
100	00:26:55 10-Sep-2015	78.9165	3.0272	yes	yes	yes	no	no
101	03:03:33 10-Sep-2015	78.9167	4.0147	yes	yes	yes	yes	yes
102	06:28:11 10-Sep-2015	78.9153	4.9715	yes	yes	yes	no	no
103	10:56:55 10-Sep-2015	78.918	5.9983	yes	yes	yes	yes	yes
104	14:15:37 10-Sep-2015	78.9162	7.0115	yes	yes	yes	yes	yes
105	17:58:22 10-Sep-2015	78.9163	7.4973	yes	yes	yes	no	no
106	19:29:49 10-Sep-2015	78.917	7.9983	yes	yes	yes	yes	yes
107	22:06:56	78.917	8.9978	yes	yes	yes	yes	yes

Appendix 2: Moorings recovered during FS2015

Rigg F17-11 Satt ut SEP 2014, kl 21		0.610 N 08.493W	Dyp:	Fra bunn:	Ut:
	ICECat 25 m Wire Weak link	SNR. 11434	27	198	21:26
	3 m Kjetting 4 Glasskuler	galv.			
	ICECAT Mc	odem			
	SBE16	SNR.6693	55	170	21:26
	40 m Kevlar				
•	SBE37 10 m Kevlar	SNR.2962	95	130	21:19
•	10 m Keviar				
	ADCP	SNR.7636	106	119	21:19
	2 m Kjetting	galv.			
	SBE16	SNR.6694	108	117	21:19
	100 m Kevla	r			
•	5 m Kevlar				
	SBE37	SNR.7062	213	12	21:19
	2 m Kjetting g	galv.			
	4 GLASSKUI	LER	210	10	21:10
	AR661	SNR. 110			
•	5 m Kevlar.				
de la constante de	2 m Kjetting	galv.			
ŏ	ANKER	770/(620)kg	225	0	

Rigg F14-16 Satt ut 6 SEP 2014, kl 11:56	78 48,85N 006 30,09W	Dyp:	Fra bunn:	Ned i vann:

IPS	SNR. 51127	58	213	11:40
4 Glasskuler 2 m Kjetting galv.				
SBE37	SNR: 3492	62	209	11:40
5 m Kevlar				
ADCP 300	SNR: 16876	66	205	11:40
1 m Kjetting Galv. 0,5 m Kjetting Gal				
40 m Kevlar				
100 m Kevlar				
50 m Kevlar				
SBE37	SNR.3992	258	13	11:30
4 Glasskuler 2 m Kjetting Galv.				
RCM9	SNR. 1046	261	10	11:30
Svivel				
AR861	SNR. 409			
3,5 m Kevlar				
2,5 m Kjetting				
ANKER 925/(740)	kg	271	0	

Rigg F13B-1 Satt ut 6 SEP 2014, kl 17:30	78 50. 006 3	.17 N 1.06W	Dyp:	Fra bu	nn: Ut:
25 Wo	Cat m Wire eak link	SNR. 11435		26 4	90 17:25
	n Kjetting g Blasskuler ECat moder				
SBE	37	SNR. 12234	5	54 46	52 17:16
50	m Kevlar				
SBE	37	SNR. 12233	1	.02 41	.4 17:06
AD	СР	SNR.707		103 4	13 17:06
	n Kjetting g	alv.			
	Glasskuler				
20	0 m Kevlar				
SB	E37	SNR. 10295		205 3	11 16:54
20	0 m Kevlar				
2 m	Kjetting ga	lv.			
4 GI	LASSKULI	ER	4	506	16:45
AR	661	SNR. 291			
5 r	n Kevlar.				
Ŏ	n Kjetting g				
ANK	ER	770/(620)kg	5	16 0	

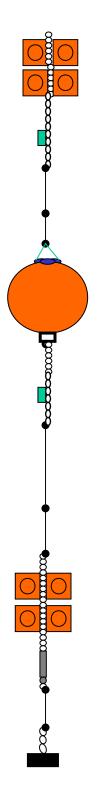
Rigg F Settes ut	7 SEP 2014, kl 13	78 50.133N 5:50 005 00.241W	Dyp:	Fra bunn:	Ned i v
Tatt opp	AUG 201 kl :0	00			
	IPS4	SNR. 1047	54	961	13
A	SBE37	SNR: 7056	56	959	13
	5 m Kevlar ADCP300	SNR: 16831	60	955	13
8	1,5 m Kjetting galv				
	RCM9	SNR. 1175	62	953	13
	10 m Kevlar Stålkule 37		72	943	
<u>Å</u>	1,5 m Kjetting galv.				
Ĭ	5 m Kevlar				
T	Hvallydopptaker		79	936	
Ø	0,5 m Kjetting galv. 50 + 20 m Kevlar				
• •	SBE37	SNR. 12232	151	864	13
	100 m Kevlar SBE37	SNR.3993	249	766	12
ço Ço	3 Glasskuler 2 m Kjetting galv.				
H EF Å	RCM9 0,5 m Kjetting galv	SNR.1327	252	763	12
•	500 m Kevlar K				
	200 m Kevlar				
	50 m Kevlar SBE37	SNR.3551	1002	13	12
	4 Glasskuler 2 m Kjetting galv.				
₿ <mark>₽</mark>	RCM11	SNR. 561	1005	10	12
ĝ	0,5 m Kjetting rustf	ri			
4	Svivel				
Į	AR861	SNR. 053			
	3,5 m Kevlar				
8	3 m Kjetting galvani	sert			
ĭ	ANIZED 1100/(890)		1015		

	8 SEP 2014 kl	78 49,154N 12:00 004 01,435W	Dyp:	Fra bunn:	Ut:
Tatt opp	AUG 20 kl				
	IPS	SNR. 51167	53	1780	11:55
Ĭ	SBE37 5 m Kevlar	SNR.3489	55	1778	11:55
	ADCP300	SNR: 17462	59	1774	11:55
8	0,5m Kjetting gal	lvanisert			
	10 m Kevlar				
	Stålkule 37	SNR. 596	69	1764	
<u>g</u>	1,5 m Kjetting ga	lvanisert			
Ţ	200 m Kevlar				
	SBE37	SNR.4837	270	1563	11:42
	3 Glasskuler 2 m Kjetting galva	anisert			
	RCM9	SNR. 884	273	1560	11:42
₿	0,5 m Kjetting gal 500 m Kevlar	v			
	500 m Kevlar 200 m Kevlar				
Ĺ	SBE37	SNR.3554	1473	360	11:21
	3 Glasskuler 2 m Kjetting galva	anisert			
	RCM11	SNR.235	1480	353	11:21
ġ	0,5 m Kjetting gal	v			
	200 m Kevlar 100 m Kevlar 40 m Kevlar				
	SBE37 4 Glasskuler 2 m Kjetting galva	SNR. 8822 nisert	1820	13	11:10
	RCM11	SNR.228	1823	10	11:10
Â	0,5 m Kjetting rust Svivel	fri			
ļ	AR861	SNR. 182			
⁸ •	3,5 m Kevlar				
8	3 m Kietting galva	nisert			

3 m Kjetting galvanisert

8

ANKER 1190/(960) kg


1833

	F 11-16 9 SEP 2014 kl 12:30 AUG kl	003 04,7W	78 48,2N	Dyp:	Fra bunn:	Ut:
	IPS	SNR. 51062		53	2395	12:00
	SBE37 5 m Kevlar	SNR. 3490		55	2393	12:00
	ADCP300	SNR: 17461		59	2389	12:20
8	1 m Kjetting galvani 10 m Kevlar	sert				
	Stålkule 37 McLar	ne		71	2377	
	1,5 m Kjetting galva	nisert				
8	100 m Kevlar 50 m Kevlar					
\$	50 m Kevlar 5 m Kevlar					
	SBE37 4 Glasskuler (gule) 2 m Kjetting galvani			278	2170	12:07
Ŵ .	RCM9	SNR.1324		282	2166	12:07
8	0,5 m Kjetting galv					
•	200 m Kevlar K 500 m Kevlar K 500 m Kevlar 50 m Kevlar					
	SBE37 3 Glasskuler (2 orar 2 m Kjetting galvani			1532	916	11:38
₿₽	RCM11	SNR.494		1535	913	11:38
Å	0,5 m Kjetting galv 500 m Kevlar K 200 m Kevlar 200 m Kevlar					
	SBE37 4 Glasskuler (gule) 2 m Kjetting galvanis	SNR. 8821 sert		2435	13	11:20
ř.	RCM8	SNR.10071		2438	10	11:20
Å	0,5 m Kjetting rustfri Svivel					
ļ	AR861	SNR. 287				
8 1	3,5 m Kevlar					
8	3 m Kjetting galvanis	sert				
	ANKER 1230/(980)	kg		2448	0	

Appendix 3: Moorings deployed during FS2015

Rigg F18-10 Satt ut 5 SEP 2015, kl 08:27 Tatt opp AUG kl		78 50.290N 008 04.722W		Dyp:	Fra bunn:	Ut:
	lasskuler Kevlar			60	158	08:26
				65	153	
Sea	iguard String		Snr. 1593		115	103
	lasskuler Kjetting galv.					
4 0 r	n Kevlar					
50 r	n Kevlar					
0 0 0 0 4 G	lasskuler					
<u> 3 п</u>	n Kjetting galv	<i>'</i> .				
AR	861	Snr. 553				
5 m	Kevlar					
2 m	Kjetting					
An'	ker	670/(540) Kg		218	0	

Rigg F17-12	78 50.107 N	Dyp:	Fra bunn:	Ut:
Satt ut 5 SEP 2015, kl 07:05	008 05.010W			

3 m Kjettin 4 Glasskule	g galv. Pr			
SBE16	SNR. 7212	55	170	07:00
50 m Kevla	ır			
ADCP	SNR.7636	106	119	06:54
2 m Kjettin	g galv.			
SBE16	SNR. 7339	108	117	06:54
100 m Kev	lar			
10 m Kevla	ır			
3 m Kjetting	galv.			
4 GLASSKU	JLER	210	10	06:44
AR861CS	SNR. 501			
5 m Kevlar				
2 m Kjettin	g galv.			
ANKER	780/(630)kg	225	0	

Rigg F14-17	78 48,866N	Dyp:	Fra bunn:	Ned i vann:
Satt ut 5 SEP 2015, kl 14:05	006 30,033W			

IPS	SNR. 51127	58	213	11:04
4 Glasskuler 2 m Kjetting gal	v.			
SBE37	SNR: 7058	62	209	14:04
5 m Kevlar				
ADCP 300	SNR: 16876	67	204	14:03
1 m Kjetting Ga 0,5 m Kjetting C				
100 m Kevlar				
50 m Kevlar				
40 m Kevlar				
SBE37	SNR.7057	258	13	11:53
4 Glasskuler 2 m Kjetting Ga	lv.			
RCM9	SNR. 1325	261	10	13:50
Svivel				
AR861	SNR. 568			
3,5 m Kevlar				
2,5 m Kjetting				
ANKER 925/(74	40) kg	271	0	

Rigg F13B-2 Satt ut 6 SEP 2015, kl		50.182 N 30.886W	Dyp:	Fra bunn:	Ut:
	ICECat 30 m Wire v	SNR. 13506 veak link	30	486	10:57
	ADCP	SNR.727	60	456	10:57
	IceCat Moder	n			
	SBE37IM	SNR. 13507	62	454	10:57
	40 m Kevlar				
L	SBE37SM	SNR. 7059	102	414	10:52
	3 m Kjetting g 4 Glasskuler	galv.			
	Seaguard	SNR. 883	204	312	10:52
	SBE37SM 200 m Kevla	SNR. 13505 ar	205	311	10:45
	200(204) m	Kevlar			
	2 m Kjetting	galv.			
	4 GLASSKU	LER	506	10	10:36
	AR661CS	SNR. 410			
T	5 m Kevlar.				
8	2 m Kjetting	galv.			
	ANKER	770/(620)kg	516	0	

Rigg F Settes ut Tatt opp	7 3-17 7 SEP 2015, kl 11: AUG 201 kl :00		Dyp:	Fra bunn:	Ned i
	IPS5	SNR. 51064	49	961	1
d	5 m Kevlar				
	ADCP300	SNR: 16831	55	955	1
	1,5 m Kjetting galv SBE16	SNR: 7253	56	954	1
	RCM9	SNR. 1175	57	953]
}	0,5 m Kjetting galv.				
	10 m Kevlar Stålkule 37		69	941	
-	5 m Kevlar				
	Hvallydopptaker		74	936	1
8	0,5 m Kjetting galv. 20 m Kevlar 50 m Kevlar				
	SBE37	SNR. 3995	146	864]
	100 m Kevlar SBE37	SNR.7060	244	766	1
0	3 Glasskuler 2 m Kjetting galv.				
	RCM9 0,5 m Kjetting galv	SNR.1326	247	763]
	500 m Kevlar K				
	100 m Kevlar 100 m Kevlar 50 m Kevlar SBE37	SNR. 13504	997	13	1
	4 Glasskuler 2 m Kjetting galv.				
Ŵ "		SNR. 345	1000	10	1
Å	0,5 m Kjetting rustfri				
ĥ	Svivel				
		SNR. 743			
∮	3,5 m Kevlar				
8	3 m Kjetting galvaniser	t			
0 I	j8 8 , uniser				

Rigg F Settes ut	12-17 8 SEP 2015 kl 12:	78 49,148N 19 004 00,900W	Dyp:	Fra bunn:	Ut:
Tatt opp	AUG 20 kl				
	IPS	SNR. 51167	47	1770	11:55
	SBE37 5 m Kevlar	SNR.7055	49	1772	11:55
	ADCP300	SNR: 17462	53	1777	11:54
8	1,0 m Kjetting galva	anisert			
Ī	10 m Kevlar				
	Stålkule 37	SNR.	65	1765	
<u>g</u>	1,0 m Kjetting galva	anisert			
↓ ↓					
•	200 m Kevlar				
	SBE37	SNR.3994	272	1564	11:43
	3 Glasskuler 2 m Kjetting galvani	sert			
H B	RCM9	SNR. 836	269	1561	11:43
₿ ♥	0,5 m Kjetting galv 500(498) m Kevlar				
+	500(497) m Kevlar 200(203) m Kevlar				
L.	SBE37	SNR.10294	1468	362	11:15
	3 Glasskuler 2 m Kjetting galvani	sert			
Ê ⋕E	RCM11	SNR.556	1471	359	11:15
ĝ	0,5 m Kjetting galv				
ļ	200(205) m Kevlar 100(101) m Kevlar 40 m Kevlar				
	SBE37 4 Glasskuler 2 m Kjetting galvanis	SNR. 8227 sert	1817	13	11:01
	RCM11	SNR.117	1820	10	11:01
Å	0,5 m Kjetting rustfri Svivel				
	AR861	SNR. 500			
I ∎	3,5 m Kevlar				
8	3 m Kjetting galvanis	sert			
	ANKER 1190/(960)		1830	0	

Satt ut	F11-17 9 SEP 2015 kl 08 p AUG kl	:35 003 01,508W	78 48,992N Dyp:	Fra bunn:	Ut:
	IPS	SNR. 51062	49	2401	08:30
	SBE37 5 m Kevlar	SNR. 7054	51	2399	08:30
	ADCP300	SNR: 17461	55	2395	08:30
8	1 m Kjetting galv 10 m Kevlar	vanisert			
	Stålkule 37 Mc	Lane	67	2383	
	1,0 m Kjetting ga	alvanisert			
B	100 m Kevlar				
*	50 m Kevlar 50 m Kevlar				
	SBE37	SNR. 3996	268	2182	08:16
	4 Glasskuler (gu 2 m Kjetting galv				
∎ i ∎	RCM9	SNR.1049	269	2179	08:16
8	0,5 m Kjetting ga	ılv			
Ŭ U U U U U U U U U U U U U	200(199) m Kevl 500(507) m Kevl 500(505) m Kevl 40 m Kevlar	ar K			
	SBE37 3 Glasskuler (2 d 2 m Kjetting galv		1532	928	07:46
	RCM11	SNR.538	1535	925	07:46
	0,5 m Kjetting ga 500(512) m Kevl 200 m Kevlar 200 m Kevlar				
	SBE37 4 Glasskuler (gul 2 m Kjetting galv		2437	13	07:21
Ň	Seaguard	SNR.834	2440	10	07:21
Å	0,5 m Kjetting rus Svivel	stfri			
	AR861	SNR. 499			
₹ T	3,5 m Kevlar				
g	3 m Kjetting galv	anisert			
	ANKER 1230/(9	80) kg	2450	0	

ANKER 1230/(980) kg