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On the excitation of resonant double Kelvin waves 
in the Barents Sea Opening

Yoshie Kasajima & Aleksey Marchenko

In the northern Barents Sea Opening (BSO) the K1 tidal energy is pre-
dominant in the diurnal tidal frequency band, suggesting the generation 
of a topographic wave with the K1 tidal frequency. Tidal energy of the 
K1 component becomes strong where bottom topography undulates in 
the BSO and the scale of the undulation is close to the wavelength of 
the K1 wave. An analytical model is developed to investigate the energy 
enhancement mechanism of the tidally induced topographic wave due 
to a resonance between tidal current, a topographic wave and periodic 
topography. The wave excited by the resonance is identified as a resonant 
double Kelvin wave (DKW) and the significant K1 energy in the BSO 
could be due to the excitation of the resonant DKW.

Y. Kasajima, Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø, Norway. A. March-
enko, General Physics Institute, Russian Academy of Science, 38 Valvilova str. 117942 Moscow, Russia.

Significant tidal energy is often observed when 
the tide interacts with topography. In the Arctic 
area, enhanced diurnal tides are observed on the 
Yermak Plateau (Padman et al. 1992), in the north-
western Barents Sea (Kasajima et al. unpubl. ms), 
near Bjørnøya (Bear Island) (Huthnance 1981) 
and on the East Greenland shelf (Lam 1999). 
Tidal simulations in the Arctic area also exhibit 
enhanced diurnal tides on the shelf slopes (e.g. 
Gjevik 1990; Kowalik 1994; Kowalik & Proshut-
insky 1995).

The significant energy enhancement can be 
explained by a local resonance or an excitation of 
a topographic wave whose group velocity is close 
to zero. As shown in the next section, K1 tidal 
simulations show that tidal vortices appear along 
the shelf slope in the Barents Sea Opening (BSO). 
The size of the tidal vortices changes as they 
proceed northward, due to the variation of the 
bottom slope, and this variation of the bottom 
slope makes it possible to generate waves with 
the major diurnal frequencies, both K1 and O1. 
However, observations show that the K1 compo-
nent is enhanced significantly while other diurnal 
tides are small (Kasajima et al. unpubl. ms). The 

BSO is connected to the Storfjord Channel and 
the Bjørnøya Channel, and the bottom contours 
undulate in a cross-shelf direction (Fig. 1). The 
estimated wavelength of the topographic wave 
with the K1 tidal frequency from the observations 
in the northern BSO has a scale to the width of 
the Storfjord Channel. The energy enhancement 
in only the K1 frequency band seem to be related 
to the wavelength and the topographic scale.

In this paper, we formulate the mechanism 
of resonance between a topographic wave, tidal 
current and periodic topography to explain the 
enhancement of energy in the K1 frequency in 
the BSO. The bottom slope is the most important 
factor for the determination of the wave charac-
teristics. However, here we focus on the effect of 
the topographic undulation and ignore the effect 
of the slope. The paper is organized as follows. 
First, computed surface elevation of the K1 tide in 
the northern BSO shows the tidal vortices along 
the BSO. Next, the features of the tidal current 
are formulated, and in the subsequent section the 
properties of tidal waves at the depth discontinu-
ity and a double Kelvin wave (DKW) are investi-
gated. We then develop the theory to describe the 



242 On the excitation of double Kelvin waves in the Barents Sea Opening

resonant excitation of DKW and, in the final sec-
tion, discuss the K1 tide in the BSO.

Numerical simulation

The K1 tide is simulated in the BSO with SINMOD 
(Slagstad 1987) with a horizontal grid size of 
4 km. The open boundary condition is defined by 
the previously applied model for the Barents Sea 
with 20 km horizontal grid size (Kasajima et al. 
unpubl. ms). The computation area is shown in 
Fig. 2 and the northern part of the BSO is focused 
on here.

Figure 3 shows the surface elevation of six 
phases in the diurnal tidal cycle in the northern 
part of the BSO. Tidal vortices appear along the 
BSO slope. They consist of a pair of anticyclonic 
and cyclonic vortices. Since the sub-inertial 
topographic wave is a vorticity wave the vortex 
pair along the slope is a clear signal of the 
topographic wave. The large vortex on Svalbard 
Bank, on the other hand, does not consist of a 
vortex pair, indicating that it is a pulse rather than 
a continuum wave.

The tidal vortices become clear near Bjørnøya. 
They are very weak to the south of Bjørnøya, and 
the large vortex on Svalbard Bank is weakened 

as it approaches Bjørnøya, suggesting that it does 
not contribute to the vortex formation on the 
BSO slope. The vortices along the BSO slope are 
formed locally west of Bjørnøya, where bottom 
contours turn eastward. The energy flux of the K1 
tide averaged over one K1 tidal period along the 
northern BSO (Fig. 4) supports the formation of 
vortex near Bjørnøya. Energy flux from Svalbard 
Bank is nearly zero and it is clear that the energy 
flux increases in the region where tidal vortex is 
formed.

The above results suggest that topographic 
undulation plays an important role in wave 
generation. In the following sections, we consider 
the physical mechanism of the excitation of a 
DKW by the resonance between the tidal current 
and undulating topography.

Tidal oscillations

We define non-dimensional variables:

t = ft’, x = – , y = – , u = – , v = – , η = – , H = — ,

where t, x and y are the time and horizontal coor-
dinates, f is the Coriolis parameter, v = (u, v) is 
depth-averaged horizontal velocity, η is the per-
turbation of the water surface, and H is water 
depth. The variables with primes denote dimen-

Fig. 1. Topography of the western Barents Sea. The dotted 
thick line shows the Barents Sea Opening (BSO).

Fig. 2. Computation area of the 4 km horizontal grid model. 
The open boundary condition is defined by the larger area of 
the 20 km horizontal grid model. The area enclosed by the 
dotted line is focused on in this paper.
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sional variables. Typical scales are f = 1.4 × 10-4 s-1, 
L = 100 km, H0 = 1000 m, U = 10-2ms-1 and 
a = 1.0 m. Vertically integrated equations of 
momentum and mass balance are written in non-
dimensional form as (1.1):

— - v = - µ — + —   ,

 — + u = - µ — + —  ,

— +  —— +  ——  = 0

where µ = gH0(fL)-2 ≈ 50. Non-dimensional diur-

Fig. 3. Surface elevation of the six phases of the K1 tide in the north-western Barents Sea.
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nal tidal potential Ω is defined as:

Ω = (xΩx + yΩy) eiω t t + c.c, Ωx,y = const

where c.c. denotes complex conjugation, and 
ω t < 1 is non-dimensional frequency of diurnal 
tides scaled by the Coriolis parameter f. The tidal 
potential is considered as energy source causing 
water oscillations. Other energy sources related 
to incoming waves are not considered in the pres-
ent paper.

From Equation (1.1) energy conservation takes 
the form:

— =  -µ∇ · ∏ + A ,

where the energy density, E, the energy flux, ∏, 
and the work of the tidal forces, A, are defined as:

E = (H (u2+v2)+µη2) / 2,    ∏ = ηvH,

A = H ( — u + — v).

Assuming that the solution of Equation (1.1) is 
a periodic function of time, we find the time aver-

aged form of (1.2):

µ∇ · 〈∏〉t = 〈A〉t .

We denote the time average of a function G, by 

〈G〉t = Tt
-1   Gdt, where Tt = 2 πωt

-1.

The equations (1.1) have a simple solution when 
H is constant:

v = Veiω t t + c.c. ,     η = 0 ,

where the components of the vector V are defined 
as:

Vx =———— ,    Vy = ———— .

One can see that the time-averaged energy flux 
and the work induced by the tidal current (1.4) 
are zero, 〈∏〉t = 0, 〈A〉t = 0. In the next section we 
introduce the topographic effect on the tidal cur-
rent and show the modification of the tidal energy 
flux. Using the tidal potential makes it possible to 
formulate the solution of (1.1) in the vicinity of 
depth discontinuity in simple analytic form.

Interaction of the tidal current with a 
rectilinear depth discontinuity

For simplicity of mathematical manipulation, 
water depth is assumed to be a step structure 
in the x-direction. The depth discontinuity line 
(DD) is expressed as x = εxd (y). The dimension-
less water depth is defined by the formulas:

H = 1, x < εxd (y);     H = χ , x > εxd (y)

The small dimensionless parameter ε « 1 is pro-
portional to the amplitude of the variation of the 
DD in the y-direction. The DD is rectilinear when 
ε = 0. The conditions of continuity of water mass 
flux and pressure at the DD (matching conditions) 
are written as:

lim  v ⋅ n = χ  lim  v ⋅ n ,   lim  η = lim η ,

where n is the unit vector normal to the DD. For 
the case without lateral boundaries low frequency 
motions (ω t < 1) with a rectilinear DD under the 
action of the tidal potential are described by the 
formulas:

η = h0exp(iω t t+k 0x)+ c.c. ,
v = (V + v0exp(k 0x)) eiω t t +c.c.

The constants h0 and v0 = (u0 , v0) are defined as:

(2.1)

Fig. 4. Dimensionless energy flux averaged over K1 tidal 
period in the northern BSO area. The south-western part is 
missing because the database does not cover that area.
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h0 = -iκVx ,   u0 = - ——— h0 ,   v0 = —– ,

where

κ = ————– , k 0 = -k 0χ -1/2, k 0 = ((1-ω2)/µ)1/2.

The superscripts “+” and “-” are related to the 
values of the coefficients in the regions x > 0 and 
x < 0, respectively.

The energy flux of the solution (2.3) averaged 
over one tidal period is equal to 〈∏〉t = (0, 〈∏y〉t). 
The component of energy flux in the y-direction, 
〈∏y〉t , is equal to ∏0 when x < 0, and χ∏0 when 
x > 0, where

∏0 = κek  x (iVx Vy - iVx Vy + —— κVxVxek  x) ,

where the asterisk denotes complex conjugation.
Longuet-Higgins (1968a) has shown that there 

is another free wave solution with subinertial fre-
quency of the equations (1.1) without tidal poten-
tial, satisfying the matching conditions (2.2) with 
ε = 0, i.e. a double Kelvin wave (DKW). A DKW 
propagates along a DD in the positive y-direction 
and its amplitude decays away from the disconti-
nuity. The frequency, ω, and wave number in the 
y-direction, ky, satisfy the dispersion equation:

D(ω, ky , µ, χ ) ≡ χ (ωk-1 + ky) - ωk-1 - ky = 0,

where          k-1 = -((1-ω2)/(µχ)+ky )1/2

and              k-1 = ((1-ω2)/µ+ky )1/2.

Water surface elevation and velocity field by the 
DKW are described by the formulas:

η = h-1exp(k-1x+iθ ) + c.c,

v = v-1exp(k-1x+iθ )+ c.c.

where θ = ωt + kyy. The amplitude, h-1, of the 
DKW is an arbitrary constant, while the compo-
nents of the vector v-1 are defined by the formulas

u-1 = ————– h-1 ,  v-1 = ————– h-1 .

The solution (2.6) has a positive energy flux,

〈∏y〉t dx > 0

in the y-direction, and there is no energy flux in 
the x-direction, 〈∏x〉t = 0. The dependencies of 
〈∏y〉t and v on x are shown in Fig. 5a, b. One can 
see that the solutions (2.3) and (2.6) are independ-
ent. Further, we show that an interaction of tidal 
currents (2.3) and DKWs is possible and has reso-
nant properties when xd = sin y.

Resonant excitation of a DKW in the vi-
cinity of a periodic depth discontinuity

We consider the interaction of a tidal current with 
a periodic DD and a DKW as a resonant interac-
tion of three waves (Kaup 1976), the frequencies 
and wave numbers of which satisfy the conditions 
ω1 + ω2 = ω3 and k1 + k2 = k3. In our case, the first 
wave is the tidal current, so we set ω1 = ω t and 
k1 = 0. The second wave is the wave of the bottom 
topography, the frequency of which is ω2 = 0 
and the wave number of which is k2 = -1. The 
third wave is a DKW, the frequency and the wave 
number of which are ω3 = ω t and k3 = -1.

The condition of the resonant interaction has 

Fig. 5. (a) The x-dependencies of 
the velocity v, and (b) the average 
energy flux 〈Πy〉t induced by the 
DKW with ω =0.5 and χ = 0.3.

(a) (b)

Fig. 6. (a) The dependence of 
sea depth jump χ over DD from 
the frequency ω of the resonant 
DKW with unity non dimen-
sional wave number. (b) The 
dependence of the coefficient K 
from the frequency of the reso-
nant DKW. (a) (b)
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the form:

ω = ω t ,  ky = -1 .

In other words, the tidal frequency ω t and unity 
wave number characterizing the wavelength of 
the DD line are the roots of the dispersion equa-
tion (2.5) for the DKW. We name the condition 
(3.1) as dimensionless resonant condition, which 
is the condition for the excitation of a DKW due 
to the interaction of a tidal current of frequency 
ω t with a periodic depth discontinuity, the space 
period of which is characterized by unity wave 
number. We name the DKW satisfying condition 
(3.1) the resonant DKW.

To derive the amplitude equation for the reso-
nant DKW we replace the DD line from x = ε sin 
y to x = 0 in the matching condition (2.2),

lim Θ1 = χ ⋅ lim Θ1 ,     lim Θ2 = lim Θ2

where    Θ1 = u+ε —  sin y - εv cos y + O (ε2),

Θ2 = η +ε — sin y + O (ε2).

Following the method of multiscale expansions 
(Whitham 1974; Hsieh & Mysak 1980), we find 
the solution of equations (1.1) satisfying the con-
ditions (3.2) in the form of asymptotic expansions 
in the small parameter ε and chose the amplitudes 
of the wave modes to be slow functions of time 
T = ε t:

v = eiω t (V + Σ vn (T, x) einy) + c.c. ,

η = eiω t Σ ηn (T, x) einy + c.c.

To find the amplitude equation describing the time 
variation of the complex amplitude h-1 = η-1

 |x = 0 
of the resonant DKW we use the technique devel-
oped for the description of parametric excitation 
of edge waves in the vicinity of a crack in float-
ing ice (Marchenko 1999). In this approach the 
amplitude equations follow from the matching 
conditions, and equations of momentum and mass 
balance (1.1) are used to define the behaviour of 
the solution in the direction normal to the DD (see 
appendix).

Note that in contrast to a typical three wave 
interaction, the amplitudes of the first and the 
second waves, which are proportional to Vx and 
ε, are given. Therefore, we have derived only one 

Fig. 7. (a) Bottom contours of 500 (dotted line), 1000 (dashed 
line) and 1500 (solid line) m in the BSO, and (b) the spectra of 
these bottom contours.
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amplitude equation for the complex amplitude h-1 
of the resonant DKW.

The amplitude equation in the vicinity of the 
resonance (∆ = O(ε)) has the form:

—– + — h-1 = Kh0 .

The constants ∆ and K are defined in the appen-
dix. One can see that the DKW amplitude h-1 
tends to infinity when ∆→0 if we set ∂h-1/∂T = 0. 
Equation (3.4) describes the rise of the resonant 
DKW until its energy becomes comparable with 
the forcing wave defined by the formulas (2.3). 
The typical non-dimensional time of this process 
is τ  = K-1, and the typical dimensional time is 
T ′ = (εƒK)-1.

The dependence χ = χ(ω) following from the 
dispersion equation (2.5) at ky = -1 and µ = 50 is 
shown in Fig. 6a. The dependence K = K(ω) at 
ky = -1, µ = 50 is shown in Fig. 6b. One can see 
that χ ≈ 0.3 and K ≈ 0.13 when ω = 0.5. Assum-
ing ε = 0.1 one finds the typical time T ′ = 6.4 
days. Thus the typical time of the excitation of the 
DKW is close to several days.

From (3.4) it follows that the absolute value of 
the amplitude, |h-1|, of the resonant DKW is pro-
portional to the time with the coefficient ε |Kh0 |. 
The value of |h0 | is proportional to the modulus of 
the velocity |Vx| of the tidal current in the direc-
tion normal to the DD and to the amplitude ε of 
the variations of the DD line. Thus, the spatial 

orientation of the DD line influences the rate of 
the excitation of the resonant DKW.

The slow spatial variation of the DKW is 
described by the equation:

—– - cg —– + — h-1 = Kh0 ,

where cg is group velocity of the DKW and Y = 
εy is a slow spatial variable along the DD line. 
This equation is reduced to (3.4) in the sliding 
frame reference running with group velocity cg. 
Evidently the rise of h-1 during time τ  will occur 
over the distance cgτ . Therefore, the most inter-
esting application of the theory is related to the 
case when the group velocity of the resonant 
DKW is small.

Discussion

Using linearized shallow water equations with-
out bottom friction we have shown that the ampli-
tude of the DKW is increased in time due to 
the interaction of the diurnal tidal current with 
an unbounded periodic depth discontinuity when 
the resonant condition (3.1) is satisfied. In reality, 
bottom friction and nonlinear phenomena restrict 
the amplitude of the DKW, and the effect of the 
shelf slope must be considered.

Figure 7a shows the bottom contours with 500, 
1000 and 1500 m depths at the BSO slope. To 
quantify the wavelength of the bottom contours, 
spectra are calculated (Fig. 7b) and the dominant 
wavelength is about 330 km. A simplified topog-
raphy was produced based on the actual sea 
bottom profile along 76° N. We used this sim-
plified topography to derive a dispersion relation 
of the DKW following Longuet-Higgins (1968b). 
This is shown in Fig. 8. The K1 frequency has 
two intersects in the first mode and the wave-
lengths are estimated as 5024 km and 334 km. 
At 76° N the diameter of the vortex increases 
approximately to 150 km in the simulations (Fig. 
3), then the latter agrees with the horizontal scale 
of the simulated wave. In addition, the O1 fre-
quency also has intersects with the first mode 
at the wavelength of 5644 km and 264 km but 
the short wavelength is smaller than the scale of 
topography. Therefore, it is possible that the sig-
nificant K1 tidal energy is due to the excitation of 
the resonant DKW.

Fig. 8. Dispersion relation of the DKW in the northern BSO.
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Appendix: Derivation of the ampli-
tude equations

Substituting expansions (3.3) into equations (1.1) 
and setting the coefficients of the exponentials 
exp(iny) to be equal, one finds the system of three 
equations that defines un, vn, and ηn for each n. 
Each such system includes terms of the order 
O(ε) which are proportional to the first deriva-
tives by slow time T. Using the method of succes-
sive approximations, one finds the solution with 
accuracy O(ε) to be:

un = (αu,nhn+ε (βu,nx+γu,n) —–) ek  x ,

vn = (αv,nhn+ε (βv,nx+γv,n) —–) ek  x ,

ηn = (hn+εβn x —–) ek  x ,

where the superscripts plus and minus are related 
to the regions x > 0 and x < 0, respectively. Coef-
ficients α, β and γ  are defined by the formulas:

αu,n = αu ,  αv,n = αv ,   βu,n = βu , βv,n = βv ,

 βn = β ,  γu,n = γu ,  γv,n = γv ,

where

αu = -i ————– ,     αv = ———— ,

βu = βαu  ,    βv = βαv  ,

β = - ——— (1-kxH (iωαu+αv)+ikyH (iωαv+αu)),

and  γu = - ——————– , γv = —————–.

The superscripts plus and minus and subscript n 
are related to the values of kx = kx,n , ky = n and 
H = H±, where

kx,n =      —— + n2   , H+ = χ , H- = 1 .

Let us substitute equations (3.3) and (I) into the 
matching conditions (3.2) and set the coefficients 
of the exponentials exp(iny) to be equal. For n = 0 
one finds:

h0 = h0 + O(ε) ,

where h0 is defined by (2.3). From the second 
matching condition (3.2) for n = -1 and formula 

(II) it follows that:

h-1 = h-1 - — (kx,0 - kx,0)h0 + O(ε2)

Using the first matching condition (3.1) and for-
mulas (I) and (III) one finds:

—– + — h-1 = Kh0 ,

where
h-1 = h-1 + O(ε) , 

∆ = - ——————— ,

K = —————————————————,

and D (ω, -1, µ, χ) is defined by (2.5).
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