

Marine Micropaleontology 41 (2001) 9-23

MARINE MICROPALEONTOLOGY

www.elsevier.nl/locate/marmicro

The last occurrence of *Proboscia curvirostris* in the North Atlantic marine isotope stages 9-8

N. Koç^{a,*}, L. Labeyrie^b, S. Manthé^b, B.P. Flower^c, D.A. Hodell^d, A. Aksu^e

^aNorwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø, Norway ^bCentres des Faibles Radioactivites, CNRS-CEA, Gif sur Yvette, France ^cDepartment of Marine Science, University of South Florida, 140 Seventh Avenue South, St. Petersburg, FL 33701, USA ^dDepartment of Geology, University of Florida, 1112 Turlington Hall, Gainesville, FL 32611, USA ^eDepartment of Earth Sciences, Centre for Earth Resources Research, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5

Received 19 April 2000; accepted 16 October 2000

Abstract

Well-preserved diatoms are present in high sedimentation rate Pleistocene cores retrieved on Ocean Drilling Program (ODP) Legs 151, 152, 162 and IMAGES cruises of R/V *Marion Dufresne* from the North Atlantic. Investigation of the stratigraphic occurrence of diatom species shows that the youngest diatom event observed in the area is the last occurrence (LO) of *Proboscia curvirostris* (Jousé) Jordan and Priddle. *P. curvirostris* is a robust species that can easily be identified in the sediments, and therefore can be a practical biostratigraphic tool. We have mapped its areal distribution, and found that it stretches from 40°N to 80°N in the North Atlantic. Further, we have correlated the LO *P. curvirostris* is latitudinally diachronous through Marine Isotope Stages (MIS) 9 to 8 within the North Atlantic. This is closely related to the paleoceanography of the area. *P. curvirostris* first disappeared within interglacial MIS 9 (324 ka) from the northern areas that are most sensitive to climatic forcing, like the East Greenland current and the sea–ice margin. It survived in mid-North Atlantic until the conditions of the MIS 8 (glaciation) became too severe (260 ka). In the North Pacific at ODP Site 883 the LO *P. curvirostris* falls within MIS 8. The observed overlap in age between the North Atlantic and the North Pacific strongly suggests that the extinction of *P. curvirostris* is synchronous between these oceans. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: biostratigraphy; North Atlantic; diatoms; Pleistocene; paleoceanography; isotope stratigraphy; oxygen

1. Introduction

* Corresponding author. *E-mail addresses:* nalan.koc@npolar.no (N. Koç), laurent.labeyrie@cfr.cnrs-gif.fr (L. Labeyrie), bflower@marine.usf.edu (B.P. Flower), hodell@nersp.nerdc.ufl.edu (D.A. Hodell), aaksu@sparky2.esd.mun.ca (A. Aksu). During the last decade several high-sedimentation rate sites were drilled on sediment drifts of the North Atlantic and the Nordic Seas to study the evolution of millennial-scale climate variability (i.e. Myhre et al., 1995; Jansen et al., 1996). Most of these sites have well preserved calcium carbonate and siliceous microfossils, which provide excellent opportunities for refining the resolution of the North Atlantic

0377-8398/01/\$ - see front matter @ 2001 Elsevier Science B.V. All rights reserved. PII: \$0377-8398(00)00054-2\$

biostratigraphic schemes. Based on Ocean Drilling Program (ODP) Sites 919 and 983 eight Pleistocene diatom datum events were identified and, for the first time, tied directly to the oxygen isotope stratigraphy of the sites (Koç and Flower, 1998; Koç et al., 1999). On the basis of these datums, four high-latitude North Atlantic diatom zones were proposed for the Pleistocene (Koç and Flower, 1998; Koç et al., 1999).

The latest diatom datum event recognised in the Pleistocene sediments of mid-high latitudes of both the North Pacific and the North Atlantic is the last occurrence (LO) of *Proboscia curvirostris* (Jousé) Jordan and Priddle (1991) (Koizumi, 1992; Koç et al., 1999). In this study we investigate further the suitability of this species as a biostratigraphic marker and the event as a biostratigraphic datum. We do this by mapping the areal distribution of *P. curvirostris* in North Atlantic sediments, and by correlating the LO *P. curvirostris* event in six highresolution North Atlantic sediment cores to their oxygen isotope stratigraphies to refine the timing of the event (Fig. 1).

2. Previous records of *Proboscia curvirostris* in the North Atlantic

A good biostratigraphic marker should be easily identifiable and dissolution-resistant. Further, it should have a wide areal distribution and a short life span. *Proboscia curvirostris* (Jordan and Priddle, 1991: p. 57; synonym: *Rhizosolenia curvirostris* Jousé 1959, p. 48, pl. 2, fig. 17; Akiba and Yanagisawa, 1986, p. 497, pl. 42, figs. 1, 2; pl. 45, figs. 1–6), like all other fossil *Proboscia* species, is a robust and dissolution-resistant species. Due to its tubular structure, termed a "proboscis", and marked curvature and the spines, it is also easily identifiable in the sediments (Fig. 2).

Proboscia curvirostris is recorded from DSDP/ ODP Sites 552, 606, 607, 609, 610, 611 (Baldauf, 1984; 1987), 646 (Monjanel and Baldauf, 1989), 919 (Koç and Flower, 1998), 981, 982 (Koç, unpublished data), 983 (Koç et al., 1999), and from MD952014 and MD952027 (this study) in the North Atlantic (Fig. 1). In the Nordic Seas it is recorded from ODP Sites 907 (Koç and Scherer, 1996) and 986 (Jansen et al., 1996), and from MD992278 and MD992285 (Koç, unpublished data). This suggests quite a wide distribution for *P*. *curvirostris* in the North Atlantic stretching from 40° N to 80° N (Fig. 1).

3. Material

Six high-resolution cores with well preserved diatoms and detailed oxygen isotope stratigraphies were chosen for documentation of the LO *Proboscia curvirostris* in the North Atlantic (Fig. 1, Table 1). Even though *P. curvirostris* is recorded from several other sites in the North Atlantic, these sites are not used to document the LO *P. curvirostris* since the resolution of the biostratigraphic studies are too coarse for the present study. These sites are only used to document the distribution of *P. curvirostris* in the North Atlantic.

Sites MD952027 and DSDP 609 are located beneath the present North Atlantic Drift flow (Fig. 1). Core MD952027 consists of nanno bearing detricarbonate silty clay, and has sedimentation rates of 18 m/100 ka. (Bassinot and Labeyrie, 1996). The upper 164 m of DSDP 609 consists of interbedded oozes, marls, and muds with sedimentation rates of 6 m/100 ka (Baldauf et al., 1987). Sites MD952014 and ODP 983 are located on the Bjorn Drift under the influence of the Irminger Current. These drift sites have sedimentation rates of 15 m/100 ka. The sediments at the Bjorn Drift and at Site 983 are predominantly composed of rapidly accumulated finegrained terrigeneous particles and minor amounts of biogenic material (Jansen et al., 1996; Wold, 1994). Since the sediment build-up mainly consists of erosion and deposition of terrigeneous material from the Icelandic slope, resedimentation of biogenic material should be minimal. Further, there is no sedimentological evidence for erosion or winnowing at these sites (Jansen et al., 1996). ODP Site 919 is located on the continental rise of Southeast Greenland, within the western part of the Irminger Basin. It is primarily under the influence of the East Greenland Current. Sediments at this site are composed predominantly of silty clay, clayey silt, and clay with silt (Larsen et al., 1994). Sedimentation rates at this site are in the order of 18 m/100 ka. ODP Site 646 is situated on the northern flank of the Eirik Ridge, which is one of

Fig. 1. Map of the northern North Atlantic Ocean. Plotted are the general surface circulation and the location of the cores where *Proboscia curvirostris* is observed. In cores marked with dots the last occurrence of *P. curvirostris* is correlated to the oxygen isotope stratigraphy of the core. MD depicts cores taken by the French RV Marion Dufresne during the IMAGES cruises. All other cores are Deep Sea Drilling (DSDP) or Ocean Drilling Program (ODP) cores. Surface currents are illustrated with arrows as follows: NAD = North Atlantic Drift; IC = Irminger Current; NC = Norwegian Current; EGC = East Greenland Current; WGC = West Greenland Current; LC = Labrador Current.

the large sediment drifts in the northwest Atlantic. The site is influenced by the present-day subarctic West Greenland Current. Sediments at this site and at Eirik Ridge are dominantly terrigeneous clay and silt (Srivastava and Arthur et al., 1987; Wold, 1994). Sedimentation rates are in the order of 10 m/100 ka. Since most of the studied drift sites are build-up of erosion and deposition of terrigeneous material, we do not think resedimentation of biogenic material is a problem at these sites.

4. Methods

ODP Sites 919, 983 and MD952014 and MD952027 were sampled at intervals of 0.3–1.5 m to locate the LO *Proboscia curvirostris*. The sampled intervals from individual cores and the abundance of diatoms are listed in Appendix A. In DSDP Site 609 and ODP Site 646 previously published LO levels of *P. curvirostris* were used (Baldauf, 1987; Monjanel and Baldauf, 1989). The sample intervals where the

Fig. 2. Scanning electron microscope (SEM) photographs of *Proboscia curvirostris* Jordan and Priddle: (a) *P. curvirostris* Jordan and Priddle and *Nitzschia fossilis* (Frenguelli) Kanaya on the right side, Sample 162-983A-9H-3, 49–50 cm; (b) Detail showing a dentate end in Sample 152-919A-7H-7, 40–41 cm; (c) Detail showing a triangular spine, Sample 152-919A-7H-7, 40–41 cm; (d) *P. curvirostris* Jordan and Priddle, Sample 152-919A-7H-7, 40–41 cm; (d) *P. curvirostris* Jordan and Priddle, Sample 152-919A-7H-7, 40–41 cm.

LO *P. curvirostris* is observed in individual cores are listed in Table 2. Results from ODP Site 983 was previously published (Koç et al., 1999). In addition to the previously published results from ODP Site 919 (Koç and Flower, 1998), this site was resampled in

Table 1

Positions of those cores where the last occurrence of *Proboscia curvirostris* is correlated to the oxygen isotope stratigraphy of the core

Core site	Latitude	Longitude	Water depth (m)
DSDP 609	49°53'N	24°14′W	3883
ODP 646A	58°12N	48°22 W	3458
ODP 919A	62°40.20'N	37°27.61′W	2088
ODP 983A	60°24.20'N	23°38.43′W	1985
MD 95-2014	60°34.93'N	22°04.52′W	2397
MD 95-2027	41°44.67'N	47°24.79′W	4112

higher resolution between 36 and 46 mbsf around the LO level of *P. curvirostris*. Approximately 1-2 g of dry sample was acid cleaned and mounted on a 4×2.4 cm² glass for diatom investigations. The whole slide area was scanned, and qualitative abundance estimates of individual taxa were recorded. Details of the methods for diatom cleaning and counting procedures for these cores are previously published (Koç and Flower, 1998; Koç et al., 1999). Smear slides with 4×2.4 cm² dimensions were used for samples from cores MD952014 and MD952027. Qualitative abundance estimates of diatoms followed the same procedures as the other cores.

Stable oxygen isotope records of the cores are measured at the Laboratoire des Sciences du Climat et de l'Environnement, CNRS by L. Labeyrie and S. Manthé (DSDP 609, MD95-2014, MD95-2027), University of South Florida by B.P. Flower (ODP

Site	Тор	Тор		Bottom	
	Core, section, interval (cm)	Depth (mbsf)	Core, section, interval (cm)	Depth (mbsf)	(Ka)
ODP 919A	5H-6, 38–39	44.38	5H-6, 68–70	44.68	313-317
MD 95-2014		30.94		31.60	308-314
ODP 983A	4H-2, 49-50	28.39	4H-3, 49-50	29.89	276-299
MD 95-2027		32.70		33.00	258-260
DSDP 609 ^a	2H-3, 43-45	12.02	2H-4, 43–45	13.52	240-263
ODP 646A ^b	1H-CC	5.0	3H-1, 128–130	17.0	28-258

 Table 2

 The last occurrence of *Proboscia curvirostris* recorded in the North Atlantic sediments

^a DSDP 609 from Baldauf, 1987.

^b ODP 646A from Monjanel and Baldauf, 1989.

919), University of Florida by D.A. Hodell (ODP 983) and at the Memorial University of Newfoundland by A. Aksu (ODP 646). All records are measured on planktonic foraminifer species. Stable oxygen isotope records of ODP 919, ODP 646, MD95-2014 are measured on *Neogloboquadrina pachyderma* (sinistral) (Koç and Flower, 1998; Aksu et al., 1989; unpublished LSCE data, respectively), that of core DSDP 609 is measured on *N. pachyderma* (dextral) (Koç et al., 1999), that of core MD95-2027 is measured on *Globigerina bulloides* (unpublished LSCE data), that of core ODP 983 is measured on *N. pachyderma* and *G. bulloides* (Channell et al., 1997).

5. Results

The LO of *Proboscia curvirostris* occurs within Marine Isotope Stages (MIS) 9 and 8 in the investigated cores (Fig. 3). At ODP Site 919, which is a site at present influenced by the cold East Greenland current, and at site MD952014 south of Iceland this event happens within the second half of MIS 9, and is dated to 317–308 ka (after Imbrie et al., 1984; Prell et al., 1986; Martinson et al., 1987) (Table 2). This is the earliest timing recorded for this event in the investigated cores. At ODP Site 983 the extinction of *P. curvirostris* takes place around the MIS 9/8 transition dated between 299 and 276 ka. Further south, at ODP/DSDP Sites 646, 609 and MD952027 the LO of *P. curvirostris* does not occur until towards the end of MIS 8 between 263 and 240 ka. At MD952027, where we have the highest

sampling resolution, the event takes place between substages 8.4 and 8.2, and is dated to 260–258 ka. A similar timing is observed also at DSDP Site 609 and ODP Site 646, where the LO *P. curvirostris* is recorded between substages 8.4 and 8.2. However, due to the larger sampling interval in these cores the event can not be dated as tightly as in MD952027.

From these results it is clear that the extinction of *Proboscia curvirostris* is latitudinally diachronous within the North Atlantic, and is closely related to the paleoceanography of the area. *P. curvirostris* first disappeared from northern areas that are most sensitive to climatic forcing, like the East Greenland current and the sea–ice margin. But survived in mid-North Atlantic until the conditions of the MIS 8 glaciation became too severe. This pattern of climate evolution is similar to that of MIS 5, where the surface ocean waters of the Nordic Seas cool much earlier than the mid-latitude North Atlantic (Cortijo et al., 1994). We believe that this type of climate evolution most probably explains the diachronity observed in the extinction of *P. curvirostris* through MIS 9 and 8.

6. Discussion and conclusions

Proboscia curvirostris has also a middle to high latitude distribution in the North Pacific. Its last occurrence can be a valuable datum for correlation between the high-latitude North Atlantic and the North Pacific Oceans. Morley et al. (1982) and Sancetta and Silvestri (1984) dated the extinction

Fig. 3. The last occurrence (LO) of *Proboscia curvirostris* plotted on the oxygen isotope stratigraphy of each core. Oxygen isotope records of cores ODP 919 (Flower, unpublished data), ODP 646 (Aksu et al. 1989), MD95-2014 (unpublished LSCE data) are measured on *Neogloboquadrina pachyderma*(sinistral), that of core DSDP 609 (Koç et al., 1999) is measured on *N. pachyderma* (dextral), that of core MD95-2027 is measured on *Globigerina bulloides* (unpublished LSCE data), that of core ODP 983 is measured on *N. pachyderma* and *G. bulloides* (Channell et al., 1997). Marine isotope stage 9 is shaded, and the substages numbered according to Prell et al. (1986). Sampling intervals are plotted as bars on the left side of the records.

Fig. 4. Oxygen isotope record of ODP Site 883 plotted together with the last occurrence (LO) of *Proboscia curvirostris* (Keigwin, 1995; Morley et al., 1995). Numbers refer to oxygen isotope stages.

of *P. curvirostris* at 0.276 Ma and correlated it to MIS 8 from cores in the subarctic region of the North Pacific. Several other authors have dated the LO of *P. curvirostris* to 0.250–0.300 Ma in the middle-high latitude North Pacific (Akiba, 1986; Koizumi and Tanimura, 1985; Koizumi, 1986; Yanagisawa and Akiba, 1998). However, the event was not correlated directly to the oxygen isotope stratigraphy of the sites investigated. At present the only site in the North Pacific where this event can be correlated to the oxygen isotope stratigraphy of the sites isotope stratigraphy of the site stratigraphy of the site where this event can be correlated to the oxygen isotope stratigraphy of the site is ODP Site 883 from the Detroit Seamount where an upper Quaternary oxygen isotope record

is generated by Keigwin (1995). Morley et al. (1995) recorded the LO of *P. curvirostris* in Hole 883B at 15.56 mbsf and dated the event to the early portion of MIS 8 through the correlation of % *Cycladophora davisiana* pattern and the oxygen isotope records of Holes 883C and D. We translated this level to the composite depth scale of the oxygen isotope record of Site 883 through the correlation of the magnetic susceptibility records of the four Site 883 holes shown in Fig. 1 of Keigwin (1995). We also find that at ODP Site 883 the LO of *P. curvirostris* takes place within early MIS 8 (Fig. 4).

Bearing the dating uncertainties of these sites in

mind, we propose that the observed overlap in age between the North Atlantic and the North Pacific strongly suggests that the LO of *Proboscia curvirostris* falls within MIS 9-8 in both oceans. These results indicate that there is a high possibility that this event is synchronous (within the uncertainties of paleoceanographic influences which caused diachronity in its extinction within MIS 9-8) between these two oceans, and therefore the datum can be used for inter-ocean correlation.

Even though the observed diachronity of LO of Proboscia curvirostris in the North Atlantic can be explained by paleoceanography, why it became extinct in both the North Atlantic and the North Pacific Oceans exactly within MIS 9-8 can not be explained so readily. P. curvirostris was not the only species which went extinct during this period. Thalassiosira jouseae Akiba also went extinct around the same time with P. curvirostris both in the North Atlantic and in the North Pacific, signalling that a large scale environmental change had taken place in MIS 9-8 (Koizumi, 1992; Koç et al., 1999). As indicated by ice volume reconstructions, MIS 8 was not an especially severe glaciation. In fact the previous glaciations MIS 10 and MIS 12 were more severe (McManus et al., 1999). Still, P. curvirostris survived MIS 10 and 12, but not MIS 8. It is possible that even though the ice volume reconstructions indicate more severe glaciations during MIS 10 and 12, the surface ocean conditions were not accordingly severe. Alternatively, some other environmental factor played a stronger role in this species extinction in MIS 8.

Acknowledgements

We are grateful to Julianne Fenner and José-Abel Flores for their constructive comments, which helped prepare the final version of the manuscript. We thank Audun Igesund for the preparation of Fig. 2. The study material was provided by the Ocean Drilling Program and the IMAGES Program. This work was supported by grants from the Norwegian Research Foundation, Norwegian Polar Institute and the Norwegian Petroleum Directory to N. Koç, and by the University of South Florida Research and Creative Scholarship Grant Program under Grant No. 1245 940 R3 (BPF) to B. Flower.

Appendix A

Notes: B = barren, T = trace, R = rare, F = few, C = common, A = abundant

			51
Core, section,	Depth	Proboscia	Diatom
interval	(mbsf)	curvirostris	abundances
(cm)		abundance	
ODP Hole 919A			
1H-1, 41–42	0.410	В	С
1H-2, 40-41	1.900	В	В
1H-3, 41-42	3.410	В	Т
1H-4, 40–41	4.900	В	В
1H-5, 41–42	6.410	В	А
2H-1, 41-42	8.410	В	С
2H-2, 40-41	9.900	В	А
2H-3, 41-42	11.410	В	С
2H-4, 40-41	12.900	В	F
2H-5, 41-42	14.410	В	А
2H-6, 41-42	15.910	В	А
3H-1, 39-40	17.890	В	С
3H-2, 38-39	19.380	В	В
3H-3, 39-40	20.890	В	В
3H-4, 39-40	22.390	В	В
3H-5, 40-41	23.900	В	F
3H-6, 40-41	25.400	В	С
3H-7, 42–43	26.920	В	С
4H-1, 39-40	27.390	В	С
4H-2, 40-41	28.900	В	F
4H-3, 40-41	30.400	В	С
4H-4, 41–42	31.910	В	С
4H-5, 43-44	33.430	В	С
4H-6, 41-42	34.910	В	F
4H-7, 40-41	36.400	В	С
5H-1, 39-40	36.890	В	С
5H-1, 88-90	37.390	В	F
5H-1, 128-130	37.790	В	С
5H-2, 8-10	38.090	В	В
5H-2, 38-39	38.380	В	F
5H-2, 48-50	38.490	В	С
5H-2, 108-110	39.090	В	А
5H-3, 8-10	39.590	В	С
5H-3, 39-40	39.890	В	R
5H-3, 46-48	39.970	В	F
5H-3, 88-90	40.390	В	В
5H-3, 126-128	40.770	В	С
5H-4, 8-10	41.090	В	С
5H-4, 40-41	41.400	В	A
5H-5, 8-10	42.590	В	С
5H-5, 40-41	42.900	В	А
5H-5, 108-110	43.580	В	С
5H-6, 8–10	44.080	В	C
5H-6, 38-39	44.380	B	F
5H-6, 68–70	44.680	F	C

(continued)				(continued)
Core, section, interval (cm)	Depth (mbsf)	Proboscia curvirostris abundance	Diatom abundances	Core, section interval (cm)
5H-6, 108–110	45.090	R	С	5H-7, 49–50
5H-6, 128–130	45.290	F	С	MD05 2014
5H-6, 148–150	45.490	F	А	MID95-2014
5H-7, 8–10	45.580	F	С	
5H-7, 28–30	45.780	F	C	
5H-7, 35–36	45.850	F	A	
6H-1, 39–40	46.390	В	В	
6H-2, 40–41	47.900	В	В	
6H-3, 40–41	49.400	В	R	
6H-4, 40–41	50.900	В	R	
6H-5, 40–41	52.400	F	C	
6H-6, 40–41	53.900	F	C	
6H-/, 40-41	55.400	В	В	
7H-1, 41–42	55.910	В	R	
7H-2, 40–41	57.400	В	В	
/H-3, 48–49	58.980	В	В	
/H-4, 40–41	60.400	В	Б	
/H-3, 40–41	61.900	ĸ	F	
ODP Hole 983A				
1H-1, 49-50	0.490	В	А	
1H-2, 49-50	1.990	В	С	
1H-3, 49-50	3.490	В	В	
1H-4, 49–50	4.990	В	F	
1H-5, 49-50	6.490	В	F	
2H-1, 49-50	9.080	В	А	
2H-2, 49-50	10.580	В	А	
2H-3, 49-50	12.080	В	С	
2H-4, 49-50	13.580	В	А	
2H-5, 49-50	15.080	В	А	
2H-6, 49-50	16.580	В	В	
2H-7, 48-49	18.070	В	В	
3H-1, 49-50	20.050	В	R	
3H-2, 49–50	21.550	В	А	
3H-3, 49–50	23.050	В	А	
3H-4, 49–50	24.550	В	F	
3H-5, 49–50	26.050	В	С	
3H-6, 49–50	27.550	В	В	
3H-7, 49–50	29.050	В	R	
4H-1, 49–50	30.850	В	R	
4H-2, 49–50	32.350	В	С	
4H-3, 49–50	33.850	F	C	
4H-4, 49–50	35.350	F	Α	
4H-5, 49–50	36.850	R	A	
4H-6, 49–50	38.350	В	В	
4H-7, 49–50	39.850	В	В	
5H-1, 49–50	42.200	A	A	
5H-2, 49–50	43.700	A	A	
5H-3, 49-50	45.200	C	A	
5H-4, 49–50	46.700	C	A	
5H-5, 49–50	48.200	C	A	
5H-6, 49–50	49.700	C	А	

section, l	Depth (mbsf)	Proboscia curvirostris	Diatom abundances
		abundance	
49-50	51.200	В	В
-2014			
2017	20.0	В	R
	110.0	В	F
	180.0	В	R
	260.0	В	С
	340.0	В	С
	420.0	В	А
	500.0	В	С
	670.0	В	R
	730.0	В	А
	800.0	В	В
	840.0	В	F
	890.0	В	R
	930.0	В	В
	980.0	В	R
	1030.0	В	F
	1232.0	В	В
	1280.0	В	В
	1315.0	B	F
	1370.0	B	R
	1437.0	B	C
	1495.0	B	C
	1520.0	B	F
	1618.0	B	B
	1640.0	B	B
	1680.0	B	F
	1760.0	B	F
	1780.0	B	R
	1860.0	B	R
	1910.0	B	B
	2030.0	B	C
	2080.0	B	C
	2160.0	B	В
	2230.0	B	R
	2310.0	B	F
	2390.0	B	F
	2424.0	B	F
	2469.0	B	F
	2510.0	B	F
	2592.0	B	R
	2634.0	B	C
	2034.0	B	F
	2810.0	B	R
	2840.0	B	F
	2860.0	B	ſ
	2884.0	B	C
	2004.0	B	F
	2950.0	B	ſ
	3024.0	B	F
	3024.0	B	L.

N. Koç et al. / Marine Micropaleontology 41 (2001) 9-23

(continued)

()		()					
Core, section, interval (cm)	Depth (mbsf)	Proboscia curvirostris abundance	Diatom abundances	Core, section, interval (cm)	Depth (mbsf)	Proboscia curvirostris abundance	Diatom abundances
	3160.0	С	А		2810.0	В	F
	3183.0	В	В		2820.0	B	F
	3200.0	С	А		2850.0	В	R
	3230.0	Č	A		2880.0	B	R
	3270.0	C	А		2970.0	В	R
	3300.0	Č	A		3000.0	B	C
	3327.0	F	С		3030.0	В	В
	3340.0	В	В		3100.0	В	С
	3356.0	В	В		3150.0	В	F
					3200.0	В	С
MD95-2027					3270.0	В	C
	1.0	В	F		3300.0	F	С
	450.0	В	С		3350.0	R	C
	600.0	В	С		3400.0	R	С
	650.0	В	С		3450.0	С	A
	696.0	В	F		3480.0	F	А
	780.0	В	С		3550.0	R	F
	870.0	В	С		3600.0	В	R
	900.0	В	R		3700.0	R	F
	945.0	В	С		3750.0	R	F
	1010.0	В	F		3800.0	R	F
	1050.0	В	R		3860.0	В	F
	1100.0	В	R		3930.0	B	F
	1230.0	В	F		3960.0	F	F
	1340.0	В	R		4020.0	С	С
	1350.0	В	R		4050.0	С	С
	1390.0	В	F		4090.0	C	C
	1460.0	В	F		4150.0	С	С
	1500.0	В	F		4200.0	C	C
	1650.0	В	В		4250.0	F	F
	1680.0	В	R		4300.0	В	В
	1740.0	В	R		4330.0	В	R
	1800.0	В	В		4350.0	С	С
	1830.0	В	С		4390.0	F	F
	1924.0	В	С		4430.0	В	В
	1950.0	В	С		4500.0	F	F
	1970.0	В	A		4540.0	В	R
	2040.0	В	В		4620.0	R	F
	2100.0	В	F				
	2250.0	В	С				
	2253.0	В	С				
	2330.0	В	R	Appendix B			
	2400.0	В	F	II.			
	2414.0	В	А				
	2450.0	В	F	Core ODP 919	N	pachyderma (s.)	
	2480.0	В	F	Depth (mbsf)	δ^{18}	O(%.)	
	2530.0	В	R				
	2550.0	В	F	0.0900	2.6	287	
	2575.0	В	С	0.2800	3.1	175	
	2660.0	В	В	0.4900	3.2	053	
	2700.0	В	В	0.6900	3.2	747	
	2750.0	В	Т	0.8900	3.4	453	

Core ODP 919 Depth (mbsf)	N. pachyderma (s.) $\delta^{18}\Omega(\%)$	Core ODP 919 Depth (mbsf)	N. pachyderma (s.) $\delta^{18}\Omega(\%)$	
	2 (002		2 2224	
1.0800	3.0903	8.8800	5.8554 2.9991	
1.2000	2 (081	9.0800	2,0000	
1.3000	2.6981	9.2800	3.9068	
1.4800	3.5073	9.5800	3.8934	
1.5800	4.0103	9.6400	3.9624	
1.7000	4.4947	9.7800	3.798	
1.7800	4.6/33	9.9800	3.4100	
1.9800	4.5313	10.180	3.3104	
2.1800	4.4133	10.380	3.4868	
2.3800	4.0843	10.450	3.3018	
2.4600	3.4545	10.580	3.3281	
2.5800	4.1613	10.780	3.2381	
2.7800	4.2073	11.090	3.4807	
2.8000	3.6945	11.130	3.2758	
3.0800	4.0883	11.290	3.4338	
3.2000	4.1998	11.480	3.5780	
3.2800	3.9003	11.680	3.6447	
3.4800	4.0003	11.880	3.6998	
3.6800	3.8183	11.950	3.2352	
3.7600	4.2485	12.080	3.7594	
3.8800	3.9613	12.280	3.4794	
3.9600	3.8371	12.490	3.4755	
4.0800	4.2053	12.580	3.6186	
4.2800	3.9513	12.640	3.1678	
4.3000	4.0259	12.780	3.6588	
4.4800	4.0953	12.980	3.0531	
4.5800	4.1923	13.180	4.0216	
4.7000	3.6527	13.340	3.8284	
4.7800	3.9333	13.440	4.1250	
5.0000	4.1283	13.510	3.5934	
5.1800	3.6533	13.580	4.0877	
5.3800	2.8293	13.780	4.0798	
5.7800	3.9933	14.080	3.6507	
5.8000	3.9380	14.130	3.4165	
6.0600	4.1313	14.280	3.7698	
6.1000	3.2132	14.480	3.7052	
6.2000	3.9638	14.680	3.6963	
6.2800	4.0123	14.880	2.8825	
6.4800	3.7935	14.940	3.6267	
6.6800	3.4893	15.080	3.5564	
6.8800	3.8357	15.200	3.2578	
6.9700	3.8445	15.280	3.7873	
7.0800	3.9711	15.470	3.6858	
7.2800	3.9410	15,580	3,5658	
7.3000	3.6135	15.630	3.1744	
7.4800	3.9061	15.780	3.6910	
7.5600	3.9137	15.980	3.3064	
7.7800	3.8420	16.430	3.2949	
7.9500	3.2314	17.560	2.8472	
8.0800	3.7339	17.580	2.9553	
8.2800	4.0505	17.780	3.1866	
8.6800	3.9066	17.980	2.9734	

N. Koç et al. / Marine Micropaleontology 41 (2001) 9-23

(continued)

Depart (msr) b^{-} (0.8.)Depart (msr) b^{-} (0.8.)18.1803.121629.5803.845318.3802.992029.7603.842318.4502.923030.1003.665318.5802.922130.2503.737818.6903.083530.2803.921118.7502.664430.4803.393019.9803.428130.6803.675419.0804.113031.2503.515719.2804.049331.5803.128719.3004.024831.7802.792619.4804.014432.1802.946219.6803.946832.7703.180119.9504.08633.2803.029120.5804.280233.4903.757020.8003.918633.9503.451022.9603.941534.0803.65422.9603.941534.0803.647423.5804.168834.2803.519623.9504.259134.4703.424824.4703.476434.7603.519924.9803.648634.7803.974225.9503.518936.0804.080125.9503.518936.0804.02625.9503.518936.0804.02625.9503.518936.0804.02625.9503.518936.0804.02625.9503.518936.0804.02625.9503.518936.0804.02625.950 </th <th>derma (s.)</th>	derma (s.)
18.180 3.1216 29.580 3.5855 18.380 2.9920 29.760 3.8423 18.450 2.9230 30.100 3.6653 18.580 2.9261 30.250 3.7378 18.690 3.0835 30.280 3.9211 18.750 2.6644 30.480 3.9300 18.980 3.4281 30.680 3.6754 19.060 3.9714 30.860 3.6754 19.080 4.1130 31.250 3.5157 19.280 4.0493 31.580 3.1287 19.300 4.0248 31.780 2.9466 19.480 3.9468 32.770 3.1801 19.950 4.086 33.280 3.0291 0.580 4.2802 33.490 3.7570 20.800 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.960 3.9415 3.4080 3.4410 23.550 4.2591 34.470 3.428 24.470 3.4764 34.760 3.5199	
18.3802.992029.7603.842318.4502.923030.1003.665318.5802.926130.2503.737818.6903.083530.2803.921118.7502.664430.4803.393018.9803.428130.6603.275719.0603.971430.8603.675419.0804.113031.2503.515719.2804.049331.5803.128719.3004.024831.7802.792619.4804.014432.1802.946219.6803.946832.7703.180119.9504.08633.2803.029120.5804.280233.4903.757020.8004.112533.7003.844821.4603.313833.8003.655422.0803.918633.9503.451022.9603.941534.0803.647423.5804.168834.2803.519622.9603.941534.0803.647423.5954.259134.4703.424824.4703.463334.5803.519025.2804.093135.3803.800125.4803.996035.4503.763625.5803.984035.5804.142525.5803.984035.5804.142525.5803.984035.5804.142525.5803.984035.5804.142525.5803.939336.9803.678126.5603.985	
18.450 2.9250 30.100 3.6053 18.580 2.9261 30.250 3.7378 18.690 3.0835 30.280 3.9211 18.750 2.6644 30.480 3.3930 18.980 3.4281 30.680 3.6754 19.060 3.9714 30.860 3.6754 19.080 4.1130 31.250 3.5157 19.280 4.0493 31.580 2.7926 19.300 4.0248 31.780 2.7926 19.480 4.0144 32.180 2.9462 19.680 3.9468 32.770 3.1801 19.950 4.086 33.280 3.0291 20.580 4.2802 3.3490 3.7570 20.800 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.960 3.9415 34.080 3.654 22.960 3.9415 34.480 3.6174 23.550 4.2591 34.470 3.4248 24.470 3.6646 34.780 3.9192 25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.880 3.9960 35.580 4.1425 25.880 3.9960 35.580 4.1425 25.880 4.0670 35.770 4.3820 25.880 3.9393 3.6980 3.6781 25.880 3.9393 3.6801 3	
18.5802.9261 30.230 3.738 18.6903.08353.02803.921118.7502.664430.4803.393018.9803.428130.6803.275719.0603.971430.8603.675419.0804.113031.2503.515719.2804.049331.5803.128719.3004.024831.7802.792619.4804.014432.1802.946219.4803.946832.7703.180119.9504.08633.2803.029120.5804.280233.4903.75700.8004.112533.7003.844821.4603.313833.8003.655422.9603.941534.0803.647423.5804.168834.2803.519623.5804.66834.7803.519623.5804.66834.7803.451023.5804.68834.2803.519623.5804.259134.4703.424824.4703.646634.7803.974225.0603.691934.9804.000125.0703.544235.1804.175225.2804.093135.5804.02525.2804.093135.5804.02625.2803.996035.4503.763625.4803.996035.4503.763625.5803.696035.804.028625.2804.067035.7704.382025.2803.93933.6	
18.990 3.0855 30.280 3.9211 18.750 2.6644 30.480 3.3930 18.980 3.4281 30.680 3.2757 19.060 3.9714 30.860 3.6754 19.080 4.1130 31.250 3.5157 19.280 4.0493 31.580 3.1287 19.300 4.0248 31.780 2.7926 19.480 4.0144 32.180 2.9462 19.680 3.9468 32.770 3.1801 19.950 4.086 33.280 3.0291 20.580 4.2802 33.490 3.7570 20.800 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.0960 3.9415 34.080 3.6474 23.580 4.1688 34.280 3.5195 24.470 3.4764 34.760 3.5199 24.980 3.6486 34.780 3.9742 25.060 3.6919 34.980 4.0001 25.070 3.5189 36.680 4.1625 25.280 4.0931 35.380 3.8001 25.480 3.9940 35.580 4.1425 25.580 3.9840 35.580 4.1425 25.680 3.9840 35.580 4.1425 25.580 3.9840 36.880 4.0615 26.50 3.985 36.780 3.9144 26.560 3.985 36.780 3.9144 26.560 3.985 <	
18, 50 2.6644 30.480 3.9930 $18, 980$ 3.4281 30.680 3.2757 19.060 3.9714 30.860 3.6754 19.080 4.1130 31.250 3.5157 19.280 4.0493 31.580 3.1287 19.300 4.0248 31.780 2.7926 19.480 4.0144 32.180 2.9462 19.480 4.0144 32.180 2.9462 19.680 3.9468 32.770 3.1801 19.950 4.086 33.280 3.0291 20.580 4.2802 33.490 3.7570 20.800 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.080 3.9186 33.950 3.4510 22.960 3.9415 34.080 3.6474 23.580 4.1688 34.280 3.5196 23.950 4.2591 34.470 3.4764 24.740 3.4764 34.760 3.5199 24.980 3.6486 34.780 3.9742 25.060 3.9940 35.580 4.1625 25.770 3.5189 36.080 4.1425 25.680 3.9940 35.580 4.1625 25.880 4.0670 35.770 4.3820 25.950 3.5189 36.080 4.1425 25.880 4.0670 35.770 4.3820 25.880 4.0670 35.770 4.3820 25.880 3.9940 </td <td></td>	
18,980 $3,4281$ $30,080$ $3,2717$ $19,060$ $3,9714$ $30,860$ $3,6754$ $19,080$ $4,1130$ $31,250$ $3,5157$ $19,280$ $4,0493$ $31,580$ $3,1287$ $19,300$ $4,0248$ $31,780$ 2.9462 $19,480$ $4,0144$ $32,180$ 2.9462 $19,680$ 3.9468 $32,770$ 3.1801 $19,950$ $4,086$ $33,280$ 3.0291 $20,580$ $4,2802$ $33,490$ $3,7570$ $20,800$ $4,1125$ $33,700$ 3.8448 $21,460$ $3,3138$ $33,800$ 3.6554 $22,080$ $3,9186$ $33,950$ 3.4510 $22,960$ $3,9415$ $34,080$ 3.6474 $23,580$ $4,1688$ $34,280$ 3.5196 $23,950$ 4.2591 $34,470$ 3.4248 $24,470$ $3,4633$ $34,580$ $3,4400$ $24,980$ $3,6486$ $34,780$ 3.9742 $25,060$ $3,6919$ $34,980$ 4.0001 $25,070$ $3,5442$ $35,180$ $4,1752$ $25,80$ $4,0670$ $35,770$ $4,3820$ $25,680$ $3,9840$ $35,580$ $4,1425$ $25,680$ $3,9840$ $35,580$ $4,1425$ $25,680$ $3,985$ $3,6,780$ $3,9144$ $26,580$ $3,939$ $36,080$ $4,0615$ $26,560$ $3,985$ $3,6,780$ $3,9144$ $26,580$ $3,939$ $36,080$ $3,6781$ $26,580$ $3,9393$ <	
19.060 3.9714 30.860 3.6754 19.080 4.1130 31.250 3.5157 19.280 4.0493 31.580 3.1287 19.300 4.0248 31.780 2.7926 19.480 4.0144 32.180 2.9462 19.680 3.9468 32.770 3.1801 19.950 4.086 33.280 3.0291 20.580 4.2802 33.490 3.7570 20.800 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.960 3.9415 34.080 3.6451 23.950 4.2591 34.470 3.4248 24.470 3.4633 34.280 3.5196 33.950 4.2591 34.470 3.4248 24.470 3.4633 34.380 3.4400 24.740 3.4633 34.580 3.001 25.060 3.6919 34.980 4.0001 25.700 3.5442 35.180 4.1752 25.880 4.0670 35.770 4.3820	
19,80 $4,1130$ $31,250$ $3,5157$ $19,280$ 4.0493 $31,580$ $3,1287$ $19,300$ 4.0248 $31,780$ 2.7926 $19,480$ 4.0144 $32,180$ 2.9462 $19,680$ 3.9468 $32,770$ $3,1801$ $19,950$ 4.086 $33,280$ 3.0291 $20,580$ 4.2802 $33,490$ 3.7570 $20,800$ 4.1125 $33,700$ 3.8448 $21,460$ 3.3138 $33,800$ 3.6554 22.960 3.9415 34.080 3.6474 $23,580$ 4.1688 34.280 3.5196 23.950 4.2591 34.470 3.4248 24.470 3.4633 34.580 3.4400 24.980 3.6486 34.780 3.5199 24.980 3.6486 34.780 3.5192 25.060 3.6919 34.980 4.0001 25.070 3.5442 35.180 4.1752 25.80 4.0931 35.380 3.801 25.480 3.9960 35.450 3.7636 25.680 3.9840 35.580 4.1425 25.880 4.0670 35.770 4.3820 25.680 3.9840 36.680 4.1412 26.600 3.939 36.080 4.0286 26.560 3.985 3.6780 3.9144 26.580 3.939 36.980 3.6781 26.780 4.0167 37.450 3.7036 7.750 4.0167	
19,280 4.0493 $31,580$ 3.1287 $19,300$ 4.0248 $31,780$ 2.7926 $19,480$ 4.0144 $32,180$ 2.9462 $19,680$ 3.9468 $32,770$ 3.1801 $19,950$ 4.086 $33,280$ 3.0291 $20,580$ 4.2802 $33,490$ 3.7570 $20,800$ 4.1125 $33,700$ 3.8448 $21,460$ 3.3138 $33,800$ 3.6554 22.080 3.9186 $33,950$ 3.4510 22.960 3.9415 34.080 3.6474 $23,580$ 4.1688 $34,280$ 3.5196 24.470 3.4633 34.470 3.4248 24.470 3.4633 34.580 3.4400 24.4740 3.4764 34.760 3.5199 24.980 3.6486 34.780 3.9742 25.060 3.6919 3.980 4.0001 25.780 4.0931 35.380 3.8001 25.480 3.9840 35.580 4.1425 25.880 4.0670 35.770 4.3820 25.950 3.5189 3.6080 4.0615 25.950 3.5189 3.6080 4.0612 25.950 3.5189 3.6800 4.1414 26.560 3.985 3.6780 3.9144 26.560 3.985 3.780 3.7757 27.260 4.0167 37.380 3.7757 7.080 4.0167 37.580 3.7057	
19,300 4.0248 $31,780$ 2.7926 $19,480$ 4.0144 $32,180$ 2.9462 $19,680$ 3.9468 $32,770$ 3.1801 $19,950$ 4.086 $33,280$ 3.0291 $20,580$ 4.2802 $33,490$ 3.7570 $20,800$ 4.1125 $33,700$ 3.8448 $21,460$ 3.3138 $33,800$ 3.6554 $22,960$ 3.9186 $33,950$ 3.4510 $22,960$ 3.9415 $34,080$ 3.6474 $23,580$ 4.1688 $34,280$ 3.5196 $23,950$ 4.2591 $34,470$ 3.4248 $24,470$ 3.4633 $34,580$ 3.4400 $24,740$ 3.4764 $34,760$ 3.5199 $25,060$ 3.6919 $34,980$ 4.0001 $25,070$ 3.5442 $35,180$ 4.1752 $25,280$ 4.0931 $35,380$ 3.8001 $25,480$ 3.9960 $35,450$ 3.7636 $25,950$ 3.5189 36.080 4.1425 $25,950$ 3.5189 36.080 4.1425 $25,950$ 3.5189 36.780 3.2749 $26,560$ 3.985 $36,780$ 3.9144 $26,580$ 3.9339 36.980 3.6781 $26,580$ 3.9339 36.980 3.6781 $26,580$ 3.9339 36.980 3.6781 $26,580$ 3.9339 36.980 3.6781 $26,580$ 3.9339 36.980 3.6781 $26,580$ 3.9339 <td></td>	
19,480 4.0144 32.180 2.9462 $19,680$ 3.9468 32.770 3.1801 19.950 4.086 33.280 3.0291 $20,580$ 4.2802 33.490 3.7570 $20,800$ 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.960 3.9186 33.950 3.4510 22.960 3.9415 34.080 3.6474 23.580 4.1688 34.280 3.5196 23.950 4.2591 34.470 3.4248 24.470 3.4633 34.580 3.4400 24.740 3.4764 34.760 3.5199 25.060 3.6919 34.980 4.0001 25.070 3.5442 51.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.950 3.5189 36.080 4.0615 26.550 3.9840 35.580 4.1425 25.950 3.5189 36.080 4.0615 26.560 3.9953 36.781 36.980 26.560 3.9393 36.980 3.6781 26.560 3.9393 36.980 3.6781 26.780 4.2245 71.180 3.9689 27.260 4.0167 37.450 3.7036 27.270 4.0167 37.450 3.7036	
19,680 $3,9468$ $32,770$ $3,1801$ $19,950$ $4,086$ $33,280$ $3,0291$ $20,580$ $4,2802$ $33,490$ $3,7570$ $20,800$ $4,1125$ $33,700$ $3,8448$ $21,460$ $3,3138$ $33,800$ $3,6554$ $22,080$ $3,9186$ $33,950$ $3,4510$ $22,960$ $3,9415$ $34,080$ $3,6474$ $23,580$ $4,1688$ $34,280$ $3,5196$ $23,950$ $4,2591$ $34,470$ $3,4248$ $24,470$ $3,4633$ $34,580$ $3,4400$ $24,740$ $3,4764$ $34,760$ $3,5199$ $24,980$ $3,6486$ $34,780$ $3,9742$ $25,060$ $3,6919$ $34,980$ $4,0001$ $25,070$ $3,5442$ $35,180$ $4,1752$ $25,280$ $4,0931$ $35,580$ $4,1425$ $25,680$ $3,9840$ $35,580$ $4,1425$ $25,680$ $3,9840$ $35,580$ $4,1425$ $25,680$ $3,9840$ $35,580$ $4,1425$ $25,680$ $3,9840$ $35,580$ $4,1425$ $25,680$ $3,9840$ $36,680$ $4,0615$ $26,560$ $3,985$ $36,780$ $3,9144$ $26,560$ $3,985$ $36,780$ $3,9144$ $26,580$ $3,3939$ $36,980$ $3,6781$ $26,780$ $4,2245$ $37,180$ $3,9689$ $27,260$ $4,0167$ $37,450$ $3,7036$ $27,270$ $4,0167$ $37,650$ $37,656$ $27,270$ $4,0167$	
19,950 4.086 $33,280$ 3.0291 $20,580$ 4.2802 $33,490$ 3.7570 $20,800$ 4.1125 $33,700$ 3.8448 $21,460$ 3.3138 $33,800$ 3.6554 $22,080$ 3.9186 33.950 3.4510 $22,960$ 3.9415 $34,080$ 3.6474 $23,580$ 4.1688 34.280 3.5196 $23,950$ 4.2591 34.470 3.4280 $24,470$ 3.4633 34.580 3.4400 $24,740$ 3.4764 34.760 3.5199 $24,980$ 3.6486 34.780 3.9742 $25,060$ 3.6919 34.980 4.0001 $25,070$ 3.5442 35.180 4.1752 $25,280$ 4.0931 35.380 3.8001 $25,480$ 3.9960 35.580 4.1425 $25,880$ 4.0670 35.770 4.3820 $25,950$ 3.5189 36.080 4.0157 $26,560$ 3.9840 35.580 4.1425 $26,560$ 3.985 36.780 3.2749 $26,560$ 3.985 36.780 3.9749 $26,560$ 3.9339 36.980 3.6781 $27,260$ 4.0167 37.450 3.7036 $27,260$ 4.0167 37.560 3.640	
20.580 4.2802 33.490 3.7570 20.800 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.080 3.9186 33.950 3.4510 22.960 3.9415 34.080 3.6474 23.580 4.1688 34.280 3.5196 23.950 4.2591 34.470 3.4248 24.470 3.4633 34.580 3.4400 24.740 3.4764 34.760 3.5199 24.980 3.6486 34.780 3.9742 25.060 3.6919 34.980 4.0001 25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.580 4.0670 35.770 4.3820 25.950 3.5189 36.080 4.0615 26.560 3.9840 35.580 4.1425 25.950 3.5189 36.080 4.1414 26.480 4.1314 36.580 3.2749 26.560 3.985 36.780 3.9144 26.580 3.939 36.980 3.6781 26.780 4.2245 37.180 3.9689 27.260 4.0167 37.450 37.036 27.270 4.1852 27.99 36.4414	
20.800 4.1125 33.700 3.8448 21.460 3.3138 33.800 3.6554 22.980 3.9186 33.950 3.4510 22.960 3.9415 34.080 3.6474 23.580 4.1688 34.280 3.5196 23.950 4.2591 34.470 3.4248 24.470 3.4633 34.580 3.4400 24.740 3.4764 34.760 3.5199 24.980 3.6486 34.780 3.9742 25.060 3.6919 34.980 4.0001 25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.950 3.5189 36.080 4.0615 26.020 3.406 36.800 4.1425 25.950 3.5189 36.320 4.0286 26.220 3.406 36.800 4.1414 26.480 4.1314 36.580 3.2749 26.560 3.985 36.780 3.9144	
21.460 3.3138 33.800 3.6554 22.080 3.9186 33.950 3.4510 22.960 3.9415 34.080 3.6474 23.580 4.1688 34.280 3.5196 23.950 4.2591 34.470 3.4248 24.470 3.4633 34.580 3.4400 24.740 3.4764 34.760 3.5199 24.980 3.6486 34.780 3.9742 25.060 3.6919 34.980 4.0001 25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.680 3.9840 35.580 4.1425 25.950 3.5189 36.080 4.0615 26.220 3.4406 36.800 4.1414 26.480 4.1314 36.580 3.2749 26.560 3.985 36.780 3.9144 26.580 3.9399 36.980 3.6781 26.780 4.2245 37.180 3.9689 27.260 4.0167 37.450 3.7036 27.270 4.0167 37.450 3.7036	
22.0803.918633.9503.451022.9603.941534.0803.647423.5804.168834.2803.519623.9504.259134.4703.424824.4703.463334.5803.440024.7403.476434.7603.519924.9803.648634.7803.974225.0603.691934.9804.000125.0703.544235.1804.175225.2804.093135.3803.800125.4803.996035.4503.763625.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.703627.2704.185237.6903.641	
22.9603.941534.0803.647423.5804.168834.2803.519623.9504.259134.4703.424824.4703.463334.5803.440024.7403.476434.7603.519924.9803.648634.7803.974225.0603.691934.9804.000125.0703.544235.1804.175225.2804.093135.3803.800125.4803.996035.4503.763625.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.703627.2704.145737.6903.641	
23.5804.168834.2803.519623.9504.259134.4703.424824.4703.463334.5803.440024.7403.476434.7603.519924.9803.648634.7803.974225.0603.691934.9804.000125.0703.544235.1804.175225.2804.093135.3803.800125.4803.996035.4503.763625.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
23.9504.259134.4703.424824.4703.463334.5803.440024.7403.476434.7603.519924.9803.648634.7803.974225.0603.691934.9804.000125.0703.544235.1804.175225.2804.093135.3803.800125.4803.996035.4503.763625.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
24.4703.463334.5803.440024.7403.476434.7603.519924.9803.648634.7803.974225.0603.691934.9804.000125.0703.544235.1804.175225.2804.093135.3803.800125.4803.996035.4503.763625.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
24.740 3.4764 34.760 3.5199 24.980 3.6486 34.780 3.9742 25.060 3.6919 34.980 4.0001 25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.680 3.9840 35.580 4.1425 25.880 4.0670 35.770 4.3820 25.950 3.5189 36.080 4.0615 26.050 3.4243 36.320 4.0286 26.220 3.4406 36.800 4.1414 26.480 4.1314 36.580 3.2749 26.560 3.985 36.780 3.9144 26.580 3.939 36.980 3.6781 26.780 4.2245 37.180 3.9689 27.260 4.0169 37.380 3.7757 27.080 4.0167 37.450 3.7036	
24.980 3.6486 34.780 3.9742 25.060 3.6919 34.980 4.0001 25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.680 3.9840 35.580 4.1425 25.880 4.0670 35.770 4.3820 25.950 3.5189 36.080 4.0615 26.050 3.4243 36.320 4.0286 26.220 3.4406 36.800 4.1414 26.480 4.1314 36.580 3.2749 26.560 3.985 36.780 3.9144 26.580 3.939 36.980 3.6781 26.780 4.2245 37.180 3.9689 27.260 4.0169 37.380 3.7757 27.080 4.0167 37.450 3.7036	
25.060 3.6919 34.980 4.0001 25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.680 3.9840 35.580 4.1425 25.880 4.0670 35.770 4.3820 25.950 3.5189 36.080 4.0615 26.050 3.4243 36.320 4.0286 26.220 3.4406 36.800 4.1414 26.480 4.1314 36.580 3.2749 26.560 3.985 36.780 3.9144 26.580 3.3939 36.980 3.6781 26.780 4.2245 37.180 3.9689 27.260 4.0169 37.380 3.7757 27.080 4.067 37.450 3.7036	
25.070 3.5442 35.180 4.1752 25.280 4.0931 35.380 3.8001 25.480 3.9960 35.450 3.7636 25.680 3.9840 35.580 4.1425 25.880 4.0670 35.770 4.3820 25.950 3.5189 36.080 4.0615 26.050 3.4243 36.320 4.0286 26.220 3.4406 36.800 4.1414 26.480 4.1314 36.580 3.2749 26.560 3.985 36.780 3.9144 26.580 3.3939 36.980 3.6781 26.780 4.2245 37.180 3.9689 27.260 4.0169 37.380 3.7757 27.080 4.0167 37.450 3.7036	
25.2804.093135.3803.800125.4803.996035.4503.763625.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
25.4803.996035.4503.763625.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
25.6803.984035.5804.142525.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
25.8804.067035.7704.382025.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
25.9503.518936.0804.061526.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
26.0503.424336.3204.028626.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.7036	
26.2203.440636.8004.141426.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.703627.2704.185237.4503.7036	
26.4804.131436.5803.274926.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.703627.2704.185227.5802.6411	
26.5603.98536.7803.914426.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.703627.2704.195227.5803.6411	
26.5803.393936.9803.678126.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.703627.2704.185227.5803.6411	
26.7804.224537.1803.968927.2604.016937.3803.775727.0804.016737.4503.703627.2704.185227.5803.7041	
27.260 4.0169 37.380 3.7757 27.080 4.0167 37.450 3.7036 27.270 4.0152 27.580 2.641	
27.080 4.0167 37.450 3.7036 27.270 4.1952 27.580 2.(411)	
27.270 4.1952 27.590 2.(411	
2/.2/0 4.1852 5/.380 3.0411	
27.470 3.3527 37.780 3.6997	
27.680 3.9405 38.080 3.8947	
27.870 4.0307 38.280 3.5898	
28,050 3,3678 38,480 4,1952	
28.260 3.3067 38.680 4.4183	
28.300 3.0998 38.880 4.4852	
28.480 2.8073 38.950 3.7582	
28,580 2.7573 39.080 4.2320	
28.780 2.5914 39.280 3.8162	
20110 20110 31002 29 170 3 7908 39 480 4 2587	
29 370 3 3251 30 580 3 0250	
29.450 3.4833 40.200 <i>A</i> .4263	

· · · ·					
Core ODP 919 Depth (mbsf)	N. pachyderma (s.) $\delta^{18}O(\%.)$	Core ODP 919 Depth (mbsf)	N. pachyderma (s.) $\delta^{18}O(\%.)$		
40.230	3.9411	47.980	3.5937		
40.430	3.7752	48.060	3.5775		
40.580	3.8705	48.130	3.9775		
41.080	4.5576	48.180	3.2464		
41.180	3.6655	48.260	3.6875		
41.280	4.2960	48.330	3.5875		
41.700	3.9487	48.380	3.1697		
41.880	4.0737	48.430	3.253		
42.080	3.9705	48.460	3.6075		
42.580	4.6372	48.470	3.2397		
43.380	3.3529	48.530	3.5775		
43.780	4.1378	48.580	3.3148		
44.080	2.8452	48.660	3.7875		
44.280	3.7703	48.730	4.0475		
44 480	3 8256	48.780	3 9201		
44 680	3 6282	48 850	4 0075		
44 880	3 5313	48 920	4 0175		
44 950	3 0926	48 980	3 5559		
45 080	3 6874	49.020	4 1067		
45 480	3 9038	49.080	3 4265		
45 950	2 941	49.160	4 2167		
46.030	3 7375	49.220	4.2107		
46.080	3 8948	49.220	3 / 100		
46.160	1 5175	49.280	1 0767		
46.220	4.5275	49.420	3 8067		
46.220	4.5275	49.420	3 7737		
46.280	4.2770	49.480	2 7967		
40.300	4.5575	49.500	4 0567		
40.410	4.4775	49.030	4.0507		
40.480	4.1307	49.080	3.0884		
40.510	4.0375	49.700	4.0907		
40.010	4.5775	49.830	4.2007		
40.080	4.0725	49.880	3.3204		
40.700	4.2775	49.900	3.9367		
40.820	4.0775	49.970	3.0293		
40.880	4.0387	50.020	4.0267		
46.950	4.1275	50.080	3.575		
46.970	3.8427	50.160	3.8/6/		
47.030	4.1975	50.280	3.6380		
47.080	4.1649	50.360	3.9129		
47.160	4.0675	50.520	3./129		
47.220	3.8675	50.580	3.3290		
47.280	4.2523	50.660	3.6429		
47.350	3.9875	50.720	3.6329		
47.410	4.0675	50.780	2.9370		
47.480	3.9797	50.860	3.5529		
47.520	3.7975	50.920	3.6129		
47.580	4.3159	50.980	3.1607		
47.660	3.7275	51.060	3.5429		
47.720	3.9475	51.120	3.5629		
47.780	3.8527	51.180	3.0070		
47.860	3.6375	51.260	4.0429		
47.920	3.8175	51.320	3.9529		

N. Koç et al. / Marine Micropaleontology 41 (2001) 9-23

(continued)

(continued)

Core ODP 919 Depth (mbsf)	N. pachyderma (s.) $\delta^{18}O(\%.)$	Core ODP 919 Depth (mbsf)	N. pachyderma (s.) $\delta^{18}O(\%.)$	
51.380	3.5260	55.020	3.4596	
51.450	3.5829	55.080	2.8923	
51.580	4.0090	55.280	2.5370	
51.660	4.3529	55,360	3.1427	
51.710	4.4029	55.480	3.8417	
51.780	4 0838	55.570	3 4516	
51.860	4 4229	55 710	3 8197	
51 980	3 9220	55 520	4 0898	
52 020	4 2429	55,520	4 3960	
52.020	3 9850	55,660	4 6095	
52.000	4 1020	55,720	4.6401	
52.100	4.1029	55 780	4.0491	
52.220	4.2329	55.860	3.7300	
52.260	2.0720	55.000	4.1907	
52.300	3.9729	55.920	5.9305	
52.420	3.8129	55.980	4.3937	
52.480	3.7728	56.120	4.2710	
52.560	4.0029	56.180	3.4670	
52.620	3.9129	56.260	4.0170	
52.700	3.4470	56.380	4.2730	
52.760	3.8329	56.450	4.2471	
52.820	3.6929	56.460	3.4055	
52.880	3.2440	56.520	4.6078	
52.960	3.2329	56.580	4.5850	
52.970	2.8271	56.660	4.7279	
52.990	2.9899	56.720	4.6145	
53.020	3.2629	56.780	3.9380	
53.080	2.7880	56.860	4.6387	
53.160	3.0729	56.920	4.5153	
53.220	3.3129	56.980	4.5977	
53.280	3.1490	57.010	4.2417	
53.360	3.2729	57.100	4.3676	
53.420	3.2029	57.170	4.1480	
53.480	3.1203	57.220	3.4303	
53,520	3 3533	57.280	3,7712	
53,580	3 2540	57.310	4.2755	
53 660	3 3767	57 380	4 5390	
53 720	3 8667	57 450	4 1829	
53 780	3 0583	57 480	3 8997	
53.860	3 8367	57.950	3 7482	
53.000	3 / 367	58.480	4 0477	
52.080	2 0220	58 780	4.0477	
54.060	2 2967	59.090	4.0457	
54.000	3.2607	50.290	3.4917	
54.120	3.2067	59.380	4.1087	
54.180	2.8130	59.780	3.8787	
54.260	3.6367	60.480	4.0437	
54.280	3.0364	60.970	3.3068	
54.320	3.3367	61.480	4.2757	
54.380	3.1427	61.980	2.6477	
54.580	2.8920	62.450	3.3001	
54.660	3.1367	63.980	3.8067	
54.780	2.8850	64.940	3.0950	
54.920	3.3867			

References

- Akiba, F., 1986. Middle Miocene to Quaternary diatom biostratigraphy in the Nankai Trough and Japan Trench, and modified Lower Miocene through Quaternary diatom zones for middleto-high latitudes of the North Pacific. Init. Rep. DSDP 87, 393–481.
- Akiba, F., Yanagisawa, Y., 1986. Taxonomy, morphology and phylogeny of the Neogene diatom zonal marker species in the middle-to-high latitudes of the North Pacific. Init. Rep. DSDP 87, 483–554.
- Aksu, A.E., de Vernal, A., Mudie, P.J., 1989. High-resolution foraminifer, palynologic, and stable isotopic records of upper Pleistocene sediments from the Labrador Sea: paleoclimatic and paleoceanographic trends. Proc. ODP, Sci. Results 105, 617–652.
- Baldauf, J.G., 1984. Cenozoic diatom biostratigraphy and paleoceanography of the Rockall Plateau region, North Atlantic, Deep Sea Drilling Project, Leg 81. Init. Rep. DSDP 81, 439–478.
- Baldauf, J.G., 1987. Diatom biostratigraphy of the middle and highlatitude North Atlantic Ocean, Deep Sea Drilling Project, Leg 94. Init. Rep. DSDP 94, 729–762.
- Baldauf, J.G., Thomas, E., Clement, B., Takayama, T., Weaver, P.P.E., Backman, J., Jenkins, G., Mudie, P.J., Westberg-Smith, M.J., 1987. Magnetostratigraphic and biostratigraphic synthesis, Deep Sea Drilling Project Leg 94. Init. Rep. DSDP 94, 1159–1205.
- Bassinot, F., Labeyrie, L., 1996. IMAGES MD 101, Les rapports de campagnes á la mer. l'Institut Français pour la Recherche et la Technologie Polaires, 96-1, 217 pp.
- Channell, J.E.T., Hodell, D.A., Lehman, B., 1997. Relative geomagnetic paleointensity and δ^{18} O at ODP Site 983 (Gardar Drift, North Atlantic) since 350 ka. Earth Planet. Sci. Lett. 153, 103–118.
- Cortijo, E., Duplessy, J.C., Labeyrie, L., Leclaire, H., Duprat, J., van Weering, T.C.E., 1994. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, 446–449.
- Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W., Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ^{18} O record. In: Berger, A. (Ed.), Milankovitch and Climate. Reidel, Dordrecht.
- Jansen, E., Raymo, M., Blum, P., et al., 1996. Proc. ODP, Init. Rep. (1182 pp.).
- Jordan, R.W., Priddle, J., 1991. Fossil members of the diatom genus *Proboscia*. Diatom Res. 6, 55–61.
- Jousé, A.P., 1959. Species novae bacillariophytorum in sedimentis fundi oceani Pacificiet Mario Ochctensis inventae. Novitates Systematicae Plantarum non vascularum. Akad. Sci. SSSR, Inst. Botanicum nomine V. L. Komarovii 3, 12–21.
- Keigwin, L.D., 1995. Stable isotope stratigraphy and chronology of the upper Quaternary section at Site 883, Detroit Seamount. Proc. ODP Sci. Results 145, 257–264.

- Koç, N., Scherer, R., 1996. Neogene diatom biostratigraphy of the Iceland Sea Site 907. Proc. ODP, Sci. Results 151, 61–74.
- Koç, N., Flower, B., 1998. High-resolution Pleistocene diatom biostratigraphy and paleoceanography of Site 919 from the Irminger Basin. Proc. ODP Sci. Results 152, 209–219.
- Koç, N., Hodell, D.A., Kleiven, H., Labeyrie, L., 1999. High-resolution Pleistocene diatom biostratigraphy of Site 983 and correlations to isotope stratigraphy. Proc. ODP Sci. Results 162, 51–62.
- Koizumi, I., 1986. Pliocene and Pleistocene diatom datum levels related with paleoceanography in the Northwest Pacific. Mar. Micropaleontol. 10, 309–325.
- Koizumi, I., Tanimura, I., 1985. Neogene diatom biostratigraphy of the middle latitude western North Pacific, Deep Sea Drilling Project Leg 86. Init. Rep. DSDP 86, 387–407.
- Koizumi, I., 1992. Diatom biostratigraphy of the Japan Sea: Leg 127. Proc. ODP Sci. Results 127/128, 249–289.
- Larsen, H. C., Saunders, A. D., Clift, P. D. et al., 1994. Proc. ODP, Init. Rep. 152, College Station, TX (Ocean Drilling Program).
- Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000 year chronostratigraphy. Quat. Res. 27, 1–29.
- McManus, J.F., Oppo, D.W., Cullen, J.L., 1999. A 0.5 million year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975.
- Monjanel, A.-L., Baldauf, J.G., 1989. Miocene to Holocene diatom biostratigraphy from Baffin Bay and Labrador Sea, Ocean Drilling Program Sites 645 and 646. Proc. ODP, Sci. Results 105, 305–322.
- Morley, J.J., Hays, J.D., Robertson, J.H., 1982. Stratigraphic framework for the late Pleistocene in the northwest Pacific Ocean. Deep Sea Res. 29, 1485–1499.
- Morley, J.J., Tiase, V.L., Ashby, M.M., Kashgarian, M., 1995. High-resolution stratigraphy for Pleistocene sediments from North Pacific Sites 881, 883, and 887 based on abundance variations of the radiolarian *Cycladophora davisiana*. Proc. ODP Sci. Results 145, 133–140.
- Myhre, A.M., Thiede, J., Firth, J.V., et al., 1995. Proc. ODP, Init. Rep. (926pp.).
- Prell, W., Imbrie, J., Martinson, D.G., Morley, J.J., Pisias, N.G., Shackleton, N.J., Streeter, H.F., 1986. Graphic correlation of oxygen isotope stratigraphy: application to the Late Quaternary. Paleoceanography 1, 137–162.
- Sancetta, C., Silvestri, S., 1984. Diatom stratigraphy of the late Pleistocene (Brunhes) subarctic Pacific. Mar. Micropaleontol. 9, 263–274.
- Srivastava, S.P., Arthur, M., et al., 1987. Proc. ODP, Init. Rep. 105, College Station, TX (Ocean Drilling Program).
- Wold, C.N., 1994. Cenozoic sediment accumulation on drifts in the northern North Atlantic. Paleoceanography 9 (6), 917–941.
- Yanagisawa, Y., Akiba, F., 1998. Refined Neogene diatom biostratigraphy for the northwest Pacific around Japan, with an introduction of code numbers for selected diatom biohorizons. J. Geol. Soc. Jpn 104 (6), 395–414.