

Fram Strait Cruise Report 24th August – 13th September 2017

Edited by: Laura de Steur (laura.de.steur@npolar.no) Norsk Polarinstitutt Framsentret 9296 Tromsø, Norway

Table of Contents

1. Participants	3
2. Sailing log	3
3. Mooring operations during FS2017	5
3.1 Moorings recovered.	5
3.1.1 Notes on instrument failures or errors in data recovery	6
3.2 Moorings deployed during FS2017	7
3.2.1 ADCP calibrations	8
4. CTD Measurements	9
4.1 General Approach	9
4.2 CTD Package Configuration	9
4.3 CTD sections	10
4.4 Salinity Sensor Calibration	20
5. Biogeochemical Sampling	28
6. Sea ice observations.	30
6.1 General	30
6.2 Ice observations from the bridge (ASSIST)	31
6.3 Sea ice stations	31
6.4 Thin ice observations	33
6.5 Satellite maps	33
7. Radiosondes	34

1. Participants

Principle Investigators

- 1. Cruise leader Laura de Steur (NPI)
- 2. Cruise deputy Paul A. Dodd (NPI)
- 3. Colin Stedmon (Danish Technical Univ., Denmark)

CTD watches/water sampling/water sample analysis

- 4. John Guthrie (Polar Science Centre, University of Washington, USA)
- 5. Torgeir Blæstrerdalen (NPI)
- 6. Signe Melbye Hansen (Danish Technical Univ., Denmark)
- 7. Per Anton Almgren (Danish Technical Univ., Denmark)
- 8. Herdís Steinsdóttir (Danish Technical Univ., Denmark)
- 9. Margot Debyser (Univ. of Edinbrugh, UK)
- 10. Elina Nystedt (NPI)

Moorings

- 11. Kristen Fossan (NPI)
- 12. Marius Bratrein (NPI)

Sea Ice

13. Micha Itkin (NPI)

14. Rob Graham (NPI)

Date	Activities
Tue 22/8	Participants arrive in Longyearbyen
	Collect equipment sent to Longyearbyen from NPI or Bring
	19:00 Joint dinner in town at Kroa
Wed 23/8	All participants meet at Svalbard Science Centre (UNIS) 09:00 local time for safety training
	(polar bear theory, shooting).
	Afternoon: Pick up equipment (clothing) and gear at NPI logistics at UNIS
	Start setting up equipment on Lance
Thu 24/8	At 9 am participants move into cabins on Lance
	Loading equipment, setting up equipment in labs
	ADCP & LADCP compass calibrations. The LADCP turned out to be the wrong one, so no
	calibration of the actual LADCP to be used on Lance.
	Safety briefing on Lance
	Lance departs Longyearbyen at 15:00 local time. Science briefing on Lance
	Start sailing towards 78 52'N 000° 00'E (~180 nm, 18 hrs)
Fri 25/8	CTD at 0E at 9:30 UTC
	Radiosonde launch at 11:20 UTC
	CTD at 1W at 14:30 UTC, continue with CTDs at 2W and 2.5W during night.
	Passing a very narrow (N-S), very low concentration sea ice band around 1.5W.
Sat 26/8	Arrival at F11 at 5 UTC, open water as far as one can see. Recovery of F11 after breakfast
	followed by a CTD at the F11 site. Radiosonde launch at 11:00 UTC. Recovery of F12 at 13:00
	UTC followed by a CTD at the F12 site. CTDs at 3.5W and 4.5W, done by midnight. All day
	no sea ice.

2. Sailing log

Sun 27/8	Recovery of F13 after breakfast at 06:24 UTC followed by a CTD on the F13 site. Open water,
	100% ice free. Steam to F13B, recovered at 10:28 UTC. CTD at 5.5W the F13B site. Bottle
	failed so another CTD for water (no LADCP). Radiosonde launch at 11 UTC. CTD at 6W.
	Moving a bit northward into an E-W band of sea ice to look for a floe for sea ice work. Sea ice
	station (5n) after dinner (2.5 hours) with MOB. Coring only No CTDs at night steam to F14
Mon 28/8	Recovery of F14 after breakfast followed by CTD at 6 5W 7W and 7 5W Finally some sea
1011 20/0	ice thick compressed small ice floes low concentration still Recovery of E17 at 12:36 UTC
	followed by CTDs at 8, 8,5,0W. See iss station with MOD 2 groups between 17:00 and 20:20
	UTC Continue with CTDs on the sin section such Transfer warning
T 20/0	UTC. Continue with CTDs on the ain section until Tuesday morning.
Tue 29/8	Continue with CTDs until nearly 14W where we meet 'fast' ice (done by 9 UTC). Moor ship to
	land fast ice for sea ice work after lunch. Sea ice work (2 groups), drone test flying and 3
	ADCP calibrations in the evening. Leave ice floe at 21 UTC
Wed 30/8	Start IdF CTD section at 05:05 UTC, finish at 18? UTC. Steam towards SW of IdF and start
	fjord section around 21:20 UTC.
Thu 31/8	CTDs fjord section southwest of IdF. After that steam northward to the main section for a sea
	ice station at ~13W 78 55'N on Friday morning where satellite image will be obtained from.
Fri 1/9	Cancelled regular sea ice station because of fog/bad visibility. Taking thin ice samples $\sim 13W$
	After it clears photography of thin ice with drone Drone crashes ICING! Stunid we did not
	think of it Steam to Westwind 2 (moved slightly eastward because of ice). Transit is slow
	because of a lot of ice underway, stuck after the thin ice sampling for a while near main section
	at 13 5W towards 70N. Continued north but a lot of thick ice after 70 5N. Hard to navigate
	finally find a way after 4 am to Westwind 2
Set 2/0	Stort CTD section Westwind 2 (messed 0.5% to the sect to sweld because) at (.15 UTC)
Sat 2/9	Start CTD section westwind 2 (moved $\sim 0.5^{\circ}$ to the east to avoid neavy ice) at $\sim 0.15^{\circ}$ UTC
	Visibility gets bad, fog. Section finished by 1800 UTC. Sea ice station=cancelled because of
	weather. Steam to 80N, 11W overnight.
Sun 3/9	Sea ice station at ~80N, 11W between 7:00 and 10:30 UTC, moored to large ice floe
	After lunch start CTD section E-W at 80N between 11W and 2W.
	Finish CTD section at 80N until 2W.
Mon 4/9	Afternoon: sea ice station with ship moored to ice floe between 11 and 15 UTC
	Evening: Three more CTDs at 80N at 1W, 0, and 1E: only down to 750 m.
	Midnight: Steam to 78°50'N, 8W.
	Arrival at F17 at 78°50'N, 8W at noon, F17 deployed at 10:57 UTC. No sea ice.
Tues 5/9	Steam to 78°50'N, 6.5W.
	Deploy F14 at 13:47 UTC. No sea ice.
	After dinner: sea ice station south of the mooring line moored to a floe. Work for about 2.5
	hours but cancelled because of fog getting more heavy. The visibility is too had to see polar
	bear Station abandoned earlier Cores not finished since it was very thick (>5 m) ice
	Night: steam to 79N and start CTDs at 79N at 9W 8W 7W 6 5W and 6W
	Morning: finish CTDs at 79N at $9W_2W_7W_65W$ and $6W_7W_65W$
Wed 6/0	Deploy F13B at $78^{\circ}50^{\circ}N$ 5 5W at 00.43 LTC. No see ice
weu 0/9	Deploy F15D at 78 50 N, 5.5 W at 05.45 UTC. No sea ice.
	Evening: CTDs at 70 N at 5 5W 5 W 4 5W and 4W (down to 1000 m only)
	Evening: $\underline{CIDS at /9N}$ at 5.5 w, 5 w, 4.5 w and 4 w (down to 1000 m only)
	Cancelled: sea ice station near /9N, 2.5W. 100 much swell and too little sea ice. No more
Thu 7/9	options to do sea ice work, there iare no good size floes to work on. Only some left over thick
	chunks, small but thick and mostly flooded by waves.
	Morning: get last mooring equipment from the hold (3 anchors and kevlar)
	Storm picking up, no deployment possible.
	Cancelled all CTD and mooring operations during the day because of bad weather and too
	much wind, swell and waves until at least 10 pm
	Morning: repeat CTD (nr 3) at 78°50'N, 2W (F10 site). No sea ice
Fri 8/9	Deploy F10 at 12:23 UTC, no sea ice
	Repeat deep CTD at 78°50'N, 1°W (repeat of stn 2)
	Evening/night: CTDs at 79N at 0W, 1, 2, 2.5, 3, and 3.5W (down to 1000 m only)
	CTDs at 79N finished at 4:30 UTC
L	

Sat 9/9	Steam to 78°50'N, 4W for F12 deployment. No sea ice, very calm.
	Deploy F12 at 09:05 UTC
	Steam to F11 site, calm weather, no sea ice
	Start deploying F11 around 1340 UTC at 78°50'N, 3W. All goes well until we are adding the
	top section, trying to lift the last bit in one go under and angle which does not make it with the
	crane, kevlar that holds the top release breaks because of too much strain and IPS, SBE37,
	ADCP and yellow buoy fall on deck from ~10m. No one gets hurt luckily. The steel float, IPS
	frame and the SBE37 are destroyed. We wait until after dinner to continue and look for back-up
	solutions: re-use an SBE37 from last year, the ADCP is still working, change IPS frame and
	put in 8 benthos floats to replace the big one. F11 gets finally deployed at18:42 UTC.
	Steam to the main CTD section to pick up the line at 1E, start CTDs around 23.30 UTC.
Sun 10/9	All day: continue CTD section at 78°50'N, 1E, 2E, etc. towards Svalbard. No sea ice. Winds
	picking up and more waves but still good enough to do all CTDs
	Finish the main CTD section at 78°50'N at 10°E at 5:20 UTC. Steam eastward into
Mon 11/9	Krossfjorden and Lilliehookfjorden and Lilliehookbreen for sightseeing there most of the day.
	Short landing on Camp Zoo. End of cruise dinner. 1800 UTC start steaming to LYR.
Tue 12/9	8 am arrival and disembarking in Longyearbyen
	Packing gear & off loading
Wed 13/9	Flights from Longyearbyen
Thu 14/9	Flights from Longyearbyen

3. Mooring operations during FS2017

The 5 standard moorings from the Fram Strait Arctic Outflow Observatory moorings were serviced and the additional mooring F13B at 5.5°W for enhanced near-surface measurements. In addition, NPI aims to fill in the gap left at 2°W after AWI has removed their moorings in the central Fram Strait. F10 at 2°W is at the eastern edge of the EGC and is required to obtain the full transport of the EGC/RAC system. NPI deployed mooring F10 with relatively few instruments, however, aiming to improve on that in coming years by getting external funding. The instruments were programmed to go for two years since there may be a risk with next year's cruise (or cruise time) if the new research vessel is not in full operation yet in 2018. The two IceCATs that were deployed in 2016 on F17 and F13B were torn off very early in the deployment already (10 days), but one of them was still hanging on the mooring with 2 weak links and may be deployed next year after service with Seabird. All other instruments were recovered. Some SBE37s showed bad data quality. Both recoveries and deployments went extremely smooth since there was no sea ice at all in the EGC.

Mooring	Position	Depth	Date and time	Instrument	Serial #	Instrument depth (m)
		(m)	(UTC)			
F11-18	N 78° 48.998'	2465	Deployed:	IPS	51062	55
	W 03° 01.559'		10 Sept 2016,	SBE37	3490	57
			09:20	ADCP	17461	59
			Recovered:	SBE37	4702	270
			26 Aug 2017,	RCM9	1324	273
			06:41	SBE37	3552	1551
				RCM11	494	1554
				SBE37	8821	2454
				RCM8	10071	2455
				AR861	287	2458

3.1 Moorings recovered

F12-18	N 78° 49.156'	1849	Deployed:	IPS4	1047	60
	W 04° 00.427		9 Sept 2016,	SBE37	3489	62
			13:29	ADCP	17462	66
			Recovered:	SBE37 (new)	14097	~150
			26 Aug 2017,	SBE37	4837	280
			13:00	RCM Seaguard	884	283
				SBE37	3554	1488
				RCM11	235	1490
				SBE37	8822	1832
				RCM11	228	1835
				AR861	182	1839
F13-18	N 78° 50.283'	1036	Deployed:	IPS	51064	65
	W 04°59.191'	(too	8 Sept 2016,	SBE37	7056	70
		deep)	17:20	ADCP	16831	75
			Recovered:	AURAL	n/a	100
			27 Aug 2017,	SBE37	12232	172
			06:24	SBE37	3993	272
				RCM9	1327	252
				SBE37	3551	1024
				RCM11	561	1026
				AR861	053	1030
F13B-3	N 78° 50.266'	526	Deployed:	SBE37-IM weak link	13506	26
	W 05° 30.873'		8 Sept 2016,	ICEBOX	11435	58
			09:06	ADCP	727	60
			Recovered:	SBE37	12234	63
			27 Aug 2017,	SBE37	12233	102
			10:28	RCM7	9464	104
				SBE37	10295	154
E14.10	N. 700 40 0 (1)	0.71	D 1 1	AR661	291	519
F14-18	N 78° 48.861'	271	Deployed:	IPS	51127	58
	W 06° 30.074		7 Sept 2016	SBE37	3492	62
			13:23	ADCP	168/6	66
			Recovered	SBE37 (new)	14098	102
			28 Aug 2017,	SBE56 (new)	3943	197
			06:18	SBE20 (new)	3942	227
				DCM0	3992	257
					1040	201
F17 12	N 78° 50 170'	225	Deployed	SRE37 IM woold limb	12507	203
F1/-15	$W 08^{\circ} 04 012^{\circ}$	223	7 Sept 2016	SDEJ/-INI WEAK IIIK	1350/	25
	W 00 04.915		00.08	SDE10 SPE37	0095	33 75
			Recovered		7626	106
			28 Aug 2017	ICEBOX	/030	100
			12.36	SRF16	11/a	100
			12.30	SBE10 SRF56 (new)	30//	100
				SRE37	7062	190 210
				AR661	110	210
				AROUT	110	210

Table 2:	Moorings	recovered	during	FS2017.
----------	----------	-----------	--------	---------

3.1.1 Notes on instrument failures or errors in data recovery

- **IceCat at F13B** survived by having 2 weak links to it, and 1 weak link to the float. But since it was at ~9 m depth, deployed too shallow (!) it only measured there for only 10 days until the top float was broken off and it dropped to a depth of ~60 dbar for the rest of the deployment. At least it was saved and may be used again next year. Since the P data appeared corrupted after some months the P sensor is broken --> it need to be send for repair and calibration to SBE

- <u>IceCAT at F17</u> was lost. Just like the one at F13B it only had near surface data for \sim 11 days before it broke off. Data files appeared weird: there were .dat and .imm files (like there should be) but also .daz and .imz (zipped). Not clear why those were saved -> data logger?

- <u>SBE37 SN 8821</u> (F11, bottom) had a <u>drift and offset in S</u>. Bad C cell. A post-calibration dip on the CTD was done at CTD station 101 with 10 three-minute stops at depths between 2100 and 15 m.

- <u>SBE37 SN 14097</u> (F12, 150 m) had a <u>bad P sensor, needs repair</u>. Pressure derived from the upper Microcat at 60 m.

- <u>SBE37 SN 12234</u> (F13B, 50 m) had <u>bad S data for some weeks in July</u>. C sensor likely got clogged. Removed this period with bad S from processed data file.

Mooring	Position	Depth	Date and time	Instrument	Serial #	Instrument depth (m)
C		(m)	(UTC)			1 ()
F10-14	N 78° 49.624'	2650	Deployed:	ADCP	16831	50
	W 01° 57'.048		8 Sept 2017,	RCM7	1175	52
			12:23 UTC	SBE37	13253	55
				RCM Seaguard	1846	251
				SBE37	14100	253
				SBE37	8227	2642
				RCM8	12733	2645
				AR861	1424	2647
F11-19	N 78° 49.147'	2453	Deployed:	IPS	51062	55
	W 03° 3.189'		9 Sept 2017,	SBE37	3492*	57
			18:42 UTC	ADCP	18070	59
				SBE37	3996	270
				RCM9	1049	273
				SBE37	7061	1540
				RCM11	538	1542
				SBE37	8226	2442
				RCM Seaguard	834	2445
				AR861	499	2450
F12-19	N 78° 49.283'	1842	Deployed:	IPS5	51167	60
	W 04° 01.373		9 Sept 2017,	SBE37	7055	62
			09:05 UTC	ADCP	18151	66
				SBE37	3994	280
				RCM9	836	283
				SBE37	13505	1488
				RCM11	556	1490
				SBE37	10294	1830
				RCM11	117	1832
				AR861	500	1835

3.2 Moorings deployed during FS2017

13-19	N 78° 50.324'	1022	Deployed:	IPS	51064	52
	W 05°00.146'		6 Sept 2017,	ADCP	20021	55
			13:45 UTC	SBE16	7253	58
				AURAL	N/A	75
				SBE37	3995	145
				SBE37	7060	245
				RCM9	1326	252
				SBE37	13504	997
				RCM Seaguard	345	1000
				AR861	743	1010
F13B-4	N 78° 50.260'	524 m	Deployed:	SBE37-IM weak link	15910	25
	W 05° 30.926'		6 Sept. 2017,	ICEBOX	n/a	58
			09:43 UTC	ADCP	17462	60
				SBE37	9853	63
				SBE37	9852	102
				RCM Seaguard	883	104
				SBE37	7059	160
				AR661	410	510
F14-19	N 78° 48.848'	273	Deployed:	IPS	51127	58
	W 06° 30.058'		5 Sept 2017,	SBE37	7058	62
			13:47 UTC	ADCP	24385	66
				SBE56	3943	197
				SBE56	3942	227
				SBE37	7057	257
				RCM9	1325	261
				AR861	568	265
F17-14	N 78° 50.186'	226	Deployed:	SBE16	7212	55
	W 08° 4.892'		5 Sept 2017,	SBE37	13252	75
			10:26 UTC	ADCP	17461	100
				SBE16	7339	105
				SBE56	3944	190
				SBE37	14099	210
				AR661	501	218

 Table 2: Moorings deployed during FS2017.

 * Note: SBE37 sn 3492 was redeployed after 2016-2017 (i.e. not calibrated in 2017)

3.2.1 ADCP calibrations

The ADCPs that were deployed on the moorings in 2017 were all calibrated prior to deployment. That was done either on land (in Tromsø in June) or on land-fast ice during the cruise. This was the first time that all were fully and successfully calibrated prior to deployment since there were more ADCPs to change out and since there was time and good land-fast ice during the cruise to do the remaining ADCPs during the cruise.

F17	F14	F13B	F13	F12	F11	F10
SN 17461	SN 24385	SN 17462	SN 20021	SN 18151	SN 18070	SN 16831
Recovered on FS2017. Land fast ice calibration	New ADCP (lithium) Calibration in Longyear ICE TRACK*	Recovered on FS2017. Land fast ice calibration	ADCP Ex Statoil (3xalkaline) Calibration in Tromsø BOTTOM TRACK	ADCP Ex Statoil (3xalkaline) Calibration in Tromsø BOTTOM TRACK	ADCP Ex Statoil (3xalkaline) Calibration in Tromsø BOTTOM TRACK	Recovered on FS2017. Land fast ice calibration Added RCM since error > 5°
error after cal: 2.9°	error after cal: 2.3°	error after cal: 3.2°	error after cal: 2.5°	error after cal: 1.1°	error after cal: 2.2°	error after cal: 5.8°

* Programming of BT track did not work on board to start despite the newly purchased & installed firmware.

4. CTD Measurements

4.1 General Approach

The CTD used was an SBE911+ unit. Niskin bottles were closed using the bottle fire command within the Sea-Bird acquisition software so that a .bl file was created for each deployment when bottles were fired. NMEA time and position information was fed to the acquisition computer and added to each scan line of the data files. Cast starting times were automatically added to the header of all data files.

A paper log sheet was completed at each CTD station. Log sheets list the depths at which bottles were fired and the samples taken from each bottle. Times and positions manually recorded on log sheets are indented as a backup in the case of a problem with the data acquisition, not a replacement for logged time and position data. There were no problems with navigation data during the cruise.

Channel	Sensor	Serial Number	Last Calibration
Frequency	Temperature	2400	11-Apr-17
Frequency	Conductivity	3234	12Apr-17
Frequency	Pressure	0972	20-Feb-14
Frequency	Temperature 2	4052	31-Mar-17
Frequency	Conductivity 2	3447	12-Apr-17

4.2 CTD Package Configuration

A/D Voltage 0	SBE43 Oxygen	3483*	01-Dec-16 (stns 0-17)
		1740 (stns 17-end)	27-Apr-17 (stns 17-end)
A/D Voltage 1	SBE43 Oxygen 2	3481*	01-Dec-16
A/D Voltage 2	Transmissometer	CST-1306DR	18-Dec-15
A/D Voltage 3	Flourometer	FLRTD-1547	4-Jan-16
	(Chlorophyll)		
A/D Voltage 4	Fluorometer	FLCDRTD-1930	3-Des-2015
	(CDOM)		
A/D Voltage 6	Altimeter	48701	08-Jan-2010
Spar Voltage	SPAR	20349	12-9-2015

* TRIMODAL oxygen sensors

The primary oxygen sensor was replaced between stations 017 and 018 because it had begun to drift. Other than this, the package configuration was not altered during the cruise.

4.3 CTD sections

Very open drift ice conditions on the East Greenland Shelf allowed Lance to move along six sections during the cruise (Figure 4.1). Station times and the types of samples collected are summarized in Table 4.1:

- 1.
- 2. **Main Fram Strait Section (Figure 4.2):** An east-west section along the Fram Strait mooring array line at 78° 50 N, which is repeated annually. During Fram Strait 2017, stations were completed between 009 E and 014 W. Station spacing was 20 km for most of the section and 10 km in the cores of the inflow and outflow. Figure 4.2 shows hydrographic measurements collected along the Main Fram Strait Section.
- 3. Isle de France Section (Figure 4.3): A high-resolution section across the Belgica-Norske Trough on the East Greenland continental shelf close to Isle de France. This section begins at the tip of Isle de France and crosses the complete trough. The section was completed in 2013, 2014, 2015 and 2016 as well as during FS2017.
- 4. **Skjaerfjord Section (Figure 4.4):** A section along the axis of Skaerfjord. 2017 is the first year data have been collected from skjaerfjord during a Fram Strait cruise. Figure 4.4 shows the data collected along the Skjaerfjord section.
- 5. Westwind Trough Section (Figure 4.5): A high-resolution section across the northern part of the Belgica-Norske Trough on the East Greenland continental shelf. This section is in a similar location to sections completed in 2011 and 2015. Heavy ice in the region prevented an exact repeat.
- 6. **80N section (Figure 4.6):** An east-west section across Fram Strait at 80 N, permitted by exceptionally open ice conditions.
- 7. **79N section (Figure 4.7):** An east-west section across Fram Strait at 79 N. Comparison of 78 50'N, 79 N and 80 N sections will be used to estimate the impact of completing the CTD section at different latitudes in different years.

Station	Date (UTC)	Time (UTC)	Depth	Lab sal	d18O	Nuts	AT-CT	CDOM	Winkler	Lig nin	1271	1291	d15N	dSi
1	25- Aug- 2017	08:40	2605 m	11	11	11	11	11	-	8	9	7	11	11
2	25- Aug- 2017	14:38	2635 m	11	11	11	-	-	-	-	9	7	-	-
3	25- Aug- 2017	19:14	2708 m	11	11	11	11	11	-	-	9	7	11	-
4	25- Aug- 2017	23:23	2640 m	11	11	11	-	-	-	-	-	-	-	-
5	26- Aug- 2017	08:32	2526 m	11	11	11	11	11	-	-	9	7	11	11
6	26- Aug- 2017	14:28	1893 m	10	11	11	11	10	-	7	8	6	10	-
7	26- Aug- 2017	16:59	2288 m	11	11	11	-	-	-	-	-	-	11	-
8	26- Aug- 2017	20:23	1475 m	11	11	11	-	-	-	-	-	-	-	-
9	27- Aug- 2017	07:37	1045 m	11	11	11	11	11	-	-	10	7	11	11
10	27- Aug- 2017	11:25	535 m	10	10	10	-	10	10	-	-	-	10	-
11	27- Aug- 2017	12:39	535 m	1	1	1	-	1	1	-	-	-	1	2
12	27- Aug- 2017	13:33	347 m	10	10	10	10	10	-	7	8	7	10	-

13	28- Aug- 2017	07:09	273 m	-	-	-	-	-	-	-	-	-	-	-
14	28- Aug- 2017	07:47	276 m	10	10	10	-	-	-	-	-	-	-	-
15	28- Aug- 2017	09:31	242 m	9	9	9	9	9	-	-	8	6	9	9
16	28- Aug- 2017	10:57	188 m	-	-	-	-	-	-	-	-	-	-	-
17	28- Aug- 2017	13:20	228 m	9	9	9	9	9	-	8	8	6	-	-
18	28- Aug- 2017	14:21	271 m	-	-	-	-	-	-	-	-	-	-	-
19	28- Aug- 2017	15:38	235 m	9	9	9	9	9	-	-	8	5	9	-
20	28- Aug- 2017	21:43	189 m	-	-	-	-	-	-	-	-	-	-	-
21	28- Aug- 2017	22:50	275 m	10	10	10	10	10	-	8	9	6	10	10
22	29- Aug- 2017	00:02	364 m	-	-	-	-	-	-	-	-	-	-	-
23	29- Aug- 2017	01:16	326 m	9	9	9	9	9	-	-	8	5	-	-
24	29- Aug- 2017	02:28	225 m	-	-	-	-	-	-	-	-	-	-	-
25	29- Aug- 2017	03:28	194 m	8	8	8	8	8	-	8	7	4	8	8
26	29-	04:40	186 m	-	-	-	-	-	-	-	-	-	-	-

	Aug- 2017													
27	29- Aug- 2017	06:03	200 m	8	8	8	8	8	-	-	7	3	-	-
28	29- Aug- 2017	07:27	134 m	-	-	-	-	-	-	-	-	-	-	-
29	29- Aug- 2017	08:51	86 m	-	5	5	5	5	-	-	-	2	5	-
30	30- Aug- 2017	05:13	104 m	-	-	-	-	-	-	-	-	-	-	-
31	30- Aug- 2017	06:19	131 m	-	-	-	-	-	-	-	-	-	-	-
32	30- Aug- 2017	07:20	85 m	5	5	5	5	5	-	-	-	-	5	-
33	30- Aug- 2017	08:14	122 m	-	-	-	-	-	-	-	-	-	-	-
34	30- Aug- 2017	09:02	224 m	-	-	-	-	-	-	-	-	-	-	-
35	30- Aug- 2017	09:54	341 m	10	10	10	-	10	-	-	-	-	-	-
36	30- Aug- 2017	10:57	424 m	-	-	-	1	-	-	-	-	-	-	-
37	30- Aug- 2017	12:01	479 m	-	-	-	-	-	-	-	-	-	-	-
38	30- Aug- 2017	12:58	-	11	11	11	11	11	-	-	-	-	11	11
39	30- Aug-	14:11	476 m	-	-	-	-	-	-	-	-	-	-	-

	2017													
40	30- Aug- 2017	15:07	398 m	10	10	10	10	10	-	-	-	-	10	-
41	30- Aug- 2017	16:20	331 m	-	-	-	-	-	-	-	-	-	-	-
42	30- Aug- 2017	17:19	274 m	-	-	-	-	-	-	-	-	-	-	-
43	30- Aug- 2017	17:56	256 m	-	-	-	-	-	-	-	-	-	-	-
44	30- Aug- 2017	18:26	141 m	7	7	7	7	7	-	-	-	-	7	7
45	30- Aug- 2017	21:18	366 m	-	-	-	-	-	-	-	-	-	-	-
46	30- Aug- 2017	22:25	312 m	-	-	-	-	-	-	-	-	-	-	-
47	30- Aug- 2017	23:18	215 m	-	-	-	-	-	-	-	-	-	-	-
48	31- Aug- 2017	00:13	209 m	-	-	-	-	-	-	-	-	-	-	-
49	31- Aug- 2017	01:06	191 m	-	-	-	-	-	-	-	-	-	-	-
50	31- Aug- 2017	02:57	109 m	-	-	-	-	-	-	-	-	-	-	-
51	31- Aug- 2017	03:40	118 m	-	-	-	-	-	-	-	-	-	-	-
52	31- Aug- 2017	04:47	-	9	9	9	9	9	-	-	-	-	-	-

53	02- Sep- 2017	06:09	69 m	-	-	-	-	-	-	-	-	-	-	-
54	02- Sep- 2017	06:45	133 m	-	-	-	-	-	-	-	-	-	-	-
55	02- Sep- 2017	08:02	168 m	-	-	-	-	-	-	-	-	-	-	-
56	02- Sep- 2017	08:49	171 m	-	-	-	-	-	-	-	-	-	-	-
57	02- Sep- 2017	10:42	239 m	9	9	9	9	9	-	-	9	1	9	-
58	02- Sep- 2017	13:04	296 m	10	10	10	-	-	-	-	-	-	-	-
59	02- Sep- 2017	14:21	288 m	10	10	10	10	10	-	-	10	1	10	-
60	02- Sep- 2017	15:17	337 m	10	10	10	-	-	-	-	-	-	-	-
61	02- Sep- 2017	16:06	294 m	10	10	10	10	10	-	-	10	1	10	-
62	02- Sep- 2017	17:03	181 m	8	8	8	-	-	-	-	-	-	-	-
63	02- Sep- 2017	17:49	178 m	-	-	-	-	-	-	-	-	-	-	-
64	03- Sep- 2017	11:10	112 m	-	-	-	-	-	-	-	-	-	-	-
65	03- Sep- 2017	12:32	96 m	-	-	-	-	-	-	-	-	-	-	-
66	03-	13:46	296 m	-	-	-	-	-	-	-	-	-	-	-

	Sep- 2017													
67	03- Sep- 2017	15:39	208 m	-	-	-	-	-	-	-	-	-	-	-
68	03- Sep- 2017	17:29	313 m	-	-	-	-	-	-	-	-	-	-	-
69	03- Sep- 2017	18:51	329 m	-	-	-	-	-	-	-	-	-	-	-
70	03- Sep- 2017	19:43	760 m	-	-	-	-	-	-	-	-	-	-	-
71	03- Sep- 2017	21:02	1263 m	-	-	-	-	-	-	-	-	-	-	-
72	03- Sep- 2017	22:42	1708 m	-	-	-	-	-	-	-	-	-	-	-
73	04- Sep- 2017	00:32	2090 m	-	-	-	-	-	-	-	-	-	-	-
74	04- Sep- 2017	02:33	2348 m	-	-	-	-	-	4	-	-	-	-	-
75	04- Sep- 2017	05:42	2630 m	-	-	-	-	-	-	-	-	-	-	-
76	04- Sep- 2017	08:41	2783 m	-	-	-	-	-	4	-	-	-	-	-
77	04- Sep- 2017	16:48	-	-	-	-	-	-	-	-	-	-	-	-
78	04- Sep- 2017	18:31	-	-	-	-	-	-	-	-	-	-	-	-
79	04- Sep-	20:21	-	-	-	-	-	-	-	-	-	-	-	-

	2017													
80	06- Sep- 2017	02:13	262 m	-	-	-	-	5	-	-	-	-	-	-
81	06- Sep- 2017	03:37	189 m	-	-	-	-	-	-	-	-	-	-	-
82	06- Sep- 2017	05:10	255 m	-	-	-	-	-	-	-	-	-	-	-
83	06- Sep- 2017	06:06	291 m	-	-	-	-	-	-	-	-	-	-	-
84	06- Sep- 2017	07:03	564 m	-	-	-	-	-	-	-	-	-	-	-
85	06- Sep- 2017	15:02	799 m	-	-	-	-	-	-	-	-	-	-	-
86	06- Sep- 2017	17:04	941 m	-	-	-	-	-	-	-	-	-	-	-
87	06- Sep- 2017	19:02	-	-	-	-	-	-	-	-	-	-	-	-
88	06- Sep- 2017	21:12	-	-	-	-	-	-	-	-	-	-	-	-
89	06- Sep- 2017	23:11	-	-	-	-	-	-	-	-	-	-	-	-
90	08- Sep- 2017	06:10	2705 m	-	-	-	-	-	-	-	-	-	-	-
91	08- Sep- 2017	13:59	2469 m	-	-	-	-	_	-	-	-	-	-	-
92	08- Sep- 2017	17:19	-	-	-	-	-	-	-	-	-	-	-	-

93	08- Sep- 2017	19:08	-	-	-	-	-	-	-	-	-	-	-	-
94	08- Sep- 2017	21:05	-	-	-	-	-	-	-	-	-	-	-	-
95	08- Sep- 2017	22:43	-	-	-	-	-	-	-	-	-	-	-	-
96	09- Sep- 2017	00:07	-	-	-	-	-	-	-	-	-	-	-	-
97	09- Sep- 2017	01:33	-	-	-	-	-	-	-	-	-	-	-	-
98	09- Sep- 2017	23:26	2494 m	11	11	11	-	-	-	-	9	7	-	-
99	10- Sep- 2017	02:34	2538 m	11	11	11	11	11	-	8	9	9	11	-
100	10- Sep- 2017	05:51	2457 m	11	11	11	-	-	5	-	-	-	-	-
101	10- Sep- 2017	09:05	2332 m	11	11	11	11	11	-	-	-	-	11	11
102	10- Sep- 2017	13:20	2692 m	11	11	11	-	-	-	-	-	-	-	-
103	10- Sep- 2017	17:06	2440 m	11	11	11	11	11	-	-	9	-	11	-
104	10- Sep- 2017	20:17	1423 m	11	11	11	11	11	-	-	-	-	11	11
105	10- Sep- 2017	22:10	1156 m	11	11	11	-	-	-	-	-	-	11	11
106	11-	00:11	1017	11	11	11	11	11	-	-	9	-	11	-

	Sep- 2017		m											
107	11- Sep- 2017	01:53	591 m	11	11	11	-	-	-	-	-	-	-	-
108	11- Sep- 2017	03:08	211 m	8	8	8	8	8	-	-	6	-	8	8
109	11- Sep- 2017	04:09	174 m	8	8	8	8	8	-	-	-	-	-	-
110	11- Sep- 2017	05:03	66 m	5	5	5	5	5	-	-	5	-	5	5
Total	-	-	-	431	437	437	280	304	24	54	193	104	268	126

 Table 4.1
 Samples collected at each CTD station. N. B. Corrected depths are only available when profiles reached the bottom of the water column.

4.4 Salinity Sensor Calibration

Water samples for laboratory salinity measurement were collected at most CTD stations. At stations where tracer samples were collected, salinity samples were collected at standard depths of 5, 15, 25, 50, 75, 100, 150, 200, 250 and 400 dbar, plus one sample from the bottom of the water column.

Salinity samples were analysed on broad Lance using a Guildline Portasal portable salinometer which was standardised after every 24 measurements using IAPSO P-series standard seawater.

Comparison of laboratory salinity measurements and CTD-salinity measurements revealed an offset of < 0.0007 practical salinity units for the primary sensor group (Figure X). The mean offset between the primary sensor group and the laboratory measurements is, smaller then the precision of laboratory salinity measurements (+/- 0.003) and no correction is made here.

Comparison of laboratory salinity measurements and CTD-salinity measurements revealed an offset of around < 0.0008 practical salinity units for the secondary sensor group (Figure X). The mean offset between the primary sensor group and the laboratory measurements is, smaller then the precision of laboratory salinity measurements (+/- 0.003) and no correction is made here.

Both sets of CTD sensors performed exceptionally well during the cruise. The offsets determined relative to the laboratory salinity measurements are two of the smallest offsets ever determined during a Fram Strait cruise, very small offsets were also determined in 2016.

Dissolved Oxygen Sensor

The secondary oxygen sensor attached to the CTD collected good measurements throughout the cruise. The primary sensor began to behave erratically after station 015, this may be because it was connected with convoluted tubing, which trapped air bubbles. The tubing was straitened after station 015, but this did not rectify the problem, perhaps because the sensor had been affected by highly compress air bubbles in contact with the membrane? The primary sensor was therefore replaced after station 016, with another sensor which collected good data for the remainder of the cruise.

Figure 4.2: Map showing the locations of CTD stations along the *Main Fram Strait Section* (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 4.3: Map showing the location of CTD stations along the **Îsle de France Section** (top left panel); (top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 4.4: Map showing the location of CTD stations along the *Skjaerfjord Section*(top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 4.5: Map showing the location of CTD stations along the Westwind Trough Section(top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 4.6: Map showing the location of CTD stations along the **80°N section**(top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 4.7: Map showing the location of CTD stations along the 79°N section(top left panel); Measurements from the primary temperature and salinity sensors in θ -S space (top right panel); and sections of potential temperature and salinity (lower 2 panels). Station numbers are indicated above sections.

Figure 4.8: Histograms showing the difference between the primary (left hand panels) and secondary (right hand panels) sensor groups on the CTD and laboratory salinity measurements. Only points deeper than 400 m are considered, due to step salinity gradients close to the surface.

5. Biogeochemical Sampling

Water samples were collected at standard pressures of 5, 15, 25, 50, 75, 100, 150, 200, 250, 400 dbar and at the bottom of each cast along the main Fram Strait section and at selected stations along the Îsle de France and Westwind Trough sections. The samples collected at each CTD station are listed in table 4.1. Samples were collected in the following order:

- 1. Dissolved oxygen
- 2. DIC & Total alkalinity
- 3. CDOM (Filtered)
- 4. δ^{15} N & δ^{x} Si (Filtered)
- 5. Iodine speciation (Filtered)
- 6. $\delta^{18}O$
- 7. Nutrients
- 8. Salinity
- 9. ¹²⁹I

Dissolved Oxygen: Winkler samples were collected at selected stations to calibrate the SBE 43 dissolved oxygen sensor on the CTD. Samples were always collected in triplicate so that the precision of analysis could be evaluated.

Total alkalinity and dissolved inorganic carbon ($A_T \& DIC$): Samples for $\delta^{18}O$ isotope ratio analysis and dissolved nutrient analysis were always collected when Total Alkalinity and Dissolved Inorganic Carbon samples were collected.

Coloured dissolved organic matter (CDOM): Samples for δ^{18} O isotope ratio analysis and dissolved nutrient analysis were always collected when CDOM samples were collected.

 $\delta^{15}N \& \delta^{x}Si$: Samples were collected at selected locations targeting polar and shelf watermasses.

Oxygen isotope ratio analysis and dissolved nutrient analysis: Samples for δ^{18} O isotope ratio analysis and dissolved nutrient analysis were always collected concurrently.

Laboratory salinity analysis: Samples for laboratory salinity analysis were collected from all Niskin bottles. When the surface of the water column is strongly stratified, the salinity of water trapped in Niskin bottles can be significantly different from that measured by the conductivity sensor at the bottom of the CTD package, which is approximately 1 meter deeper then the top of the Niskin bottles. Independent laboratory salinity measurements give salinity measurements which correspond exactly to the other tracer measurements made from Niskin bottles. Laboratory measurements were made with a Guildline Portasal 8400b salinometer,

which was standardized every 24 samples using P-series seawater supplied by OSIL.

¹²⁹I & iodine speciation: samples were collected at selected locations targeting Atlantic and re-cicrulationg Atlantic water

Niskin bottle operations: The rubber bands which hold the Niskin bottles closed were in good condition at the beginning on the cruise and required no attention during the cruise. The rubber o-rings retaining the taps of several Niskin bottles remained in good working order throughout the cruise.

Tracer samples of sea ice: Ice cores for tracer analysis were collected at most sea ice stations. Cores were collected in duplicate or triplicate so as to allow some assessment of the variability of properties at each site sampled. Loose surface snow was removed before coring. Cores were stored in evacuated air-tight bags and melted within 48 hours of collection, after which the melt water was sub-sampled. Cores were handled with latex or nitrile gloves and an all-plastic syringe was used to extract water from buckets for CDOM sampling. Figure 5.1 shows the location of sites where ice cores for tracer analysis were collected.

Figure 5.1: Locations of sea ice floes where cores were collected for tracer analysis. The first number is a serial number assigned to ice floes from which tracer measurements have been collected. i.e.: tracer measurements have been collected from 51 ice floes in Fram Strait since sampling began in 2013. Numbers in brackets indicate the number of cores collected per floe.

6. Sea ice observations

Sea ice work on FS2017 was coordinated by Paul Dodd (NPI). Additional team members included Marius Bratrein (NPI), Mikhail Itkin (NPI), and Robert Graham (NPI). In total 7 ice stations were conducted, including one thin ice station. Additional scientists from the CTD watches assisted with on ice operations at each ice station.

6.1 General

Sea ice conditions were unusually low during FS2017. In particular, there was almost no sea ice present in the East Greenland Current, along the main CTD and mooring transect at 78°50'N, on both the outward and return journeys (Figure 6.1). As a result, there were limited opportunities for sea ice stations.

Figure 6.1: Station map showing the sea ice stations with yellow stars.

The majority of sea ice observed during the cruise was heavily ridged and deformed multiyear ice. This ice was typically very thick (2 - 4 m) and mainly of small floe sizes (< 100 m). We interpret from this pattern of observations that all of the thinner level ice and first year ice had melted out over the course of the summer. All that remained was these old, broken, thick and deformed pieces of ice.

Very little evidence of surface ice melt was observed for the majority of the cruise. We also did not observe any rotten ice floes. However, there were many small floes of broken ice and brash. Most of the melt ponds we observed were refrozen, and many were covered with fresh snow. A snow layer was observed on all of the floes where ice stations were conducted. On 1/9/2017 there was a significant snowfall event. The modal snow thickness measured with the magnaprobe on Station 3 (29/08/17, 78,50 N / 13,57 W) and Station 4 (02/09/17, 80,09 N / 11,11 W) increased from 4 to 11 cm (Figure 6.2).

Figure 6.2: Snow depth distribution

Air temperatures were below freezing for several days while on the East Greenland Shelf. Associated with these freezing conditions, newly formed thin ice was observed at several locations from 29/08/2017 - 4/09/17. High resolution satellite images were ordered for 1/9/2017 to study this thin ice (Fig 1). In association with these images, in-situ thin ice observations were then conducted using the Man Over Board boat. Visual thin ice observations from the bridge were also recorded every 15 minutes, and a GoPro camera together with GPS were installed on the rear of the ship. Vast sheets of new ice < 5 cm thick were also observed on 2/9/2017 on the Westwind 2 section.

On 7/9/2017 we experienced a substantial storm in the vicinity of our mooring sites. This storm was associated with sustained surface winds above 20 knots for more than 24 hours, and a peak near surface temperature of approximately 5°C. During this storm, we passed through an area of high ice concentration, seen from the most recent satellite image. The mean floe size in this area was small (\sim 20 m) with very thick and deformed ice. Significant melt and erosion from waves was obvious at the surface of these floes with major undercutting on the edges of the floes at the sea level. This created interesting erosional features.

6.2 Ice observations from the bridge (ASSIST)

Sea ice conditions were observed every three hours from the bridge of RV Lance. Various sea ice parameters including sea ice types, floe sizes, snow cover, ridges, rafting etc. were recorded along with ship data (position, speed, and heading) and meteorological data (visibility, air and water temperature, air pressure, wind speed and direction, and humidity). Digital photos were taken with each observation (3 photos, looking out port, bow, and starboard side).

6.3 Sea ice stations

We conducted 6 ice stations during the cruise. On each of these floes, the ice thickness and freeboard were measured directly by thickness drilling using a Kovacs thickness gauge. The combined ice and snow thickness was also surveyed indirectly using a Geonics EM31-MK2

short. The EM31 was placed on a sledge and pulled over the ice (Photo 1). The data including GPS position was logged at a frequency of 0.5 Hz on an ArcherII field computer. In total there were 21 thickness drillings performed along the EM31 survey line that were used for calibration and validation of these measurements (Figures 6.3 and 6.4).

Figure 6.3: EM31 Calibration curve

Figure 6.4: EM31 Thickness distribution

Together with the EM31 measurements, we measured snow depth along the survey line using a Magnaprobe (Figure 6.5). This consists of a snow probe and GPS and directly records the snow depth and GPS position when prompted by the observer pressing a button. These measurements were recorded approximately every two meters.

Figure 6.5: Use of the Magnaprobe

In addition to the ice and snow thickness surveys, multiple ice cores were drilled from a representative site of each floe. These included two cores to measure the temperature and salinity profiles of the ice; one core to be kept for analyses of the ice microstructure; one core bottom for to analyse the sea ice biomarker IP25. One chemistry core to be cut in to 20 cm sections for analyses of salinity, oxygen isotopes, nutrient measurements, carbonate system, and CDOM; and one to three mean tracer cores drilled from different sites across the floe (Table 6.1).

Unfortunately, we were not able to complete the full program of observations at stations 2 and 6 (Table 6.1). On Station 2, the core barrel jammed. This prevented us from drilling a temperature core and collecting a core bottom for the IP25 analyses. On station 6 heavy fog closed in around the ship and the ice station had to be abandoned for safety reasons. Therefore, we were unable to collect an archive core, core bottom for IP25 analyses and a

temperature profile.

Station	Date	Time	Lat	Lon	Т	S	Chem	Trace	Archiv	IP25	Thicknes	EM3	Magn
		(UCT)	°N	°W				r	e		s holes	1	a
													probe
1	27/08/17	17:00	78.58	6.23	Х	Х	Х	2	Х	Х	4		
2	28/08/17	15:32	78.5	9.04		Х	Х	3	Х		6	Х	
3	29/08/17	13:00	78.5	13.57	Х	Х	Х	3	Х	Х	5	Х	Х
4	03/09/17	07:22	80.09	11.11	Х	Х	Х	3	Х	Х	5	Х	Х
5	04/09/17	11:58	79.57	1.57	Х	Х	Х	3	Х	Х	5	Х	Х
6	05/09/17	18:05	78.33	8.02		Х	Х	1			2	Х	Х

Table 6.1: Overview of sea ice stations and parameters taken

6.4 Thin ice observations

In association with the freezing weather conditions observed during long sections of the cruise, areas of newly forming thin ice were observed. Following these observations, UiT ordered two RISAT images for 1/9/2-17 in the region close to our Fast ice station (Station 3)

that was made on 29/08/2017. Over the 8 hour window covering the timing of these satellite images ice visual observations were made from the bridge every 15 minutes, paying particular attention to areas of newly formed ice. A GoPro camera and GPS were also installed on the rear of the ship for later reference. Unfortunately, the areal extent of these bridge-based observations were limited by heavy fog and low visibility. Six thin ice stations were also performed in the vicinity of RV Lance using the man over board boat (Figure 6.6). At these stations observations were made of the air, surface and water temperature, sea ice thickness, sea ice salinity and surface water salinity.

Figure 6.6: thin ice sampling

6.5 Satellite maps

To assist navigation and planning sea ice stations near real time satellite maps have been produced in a semi-automatic manner. The system consists of several modules that automatically search and deliver compressed and mosaicked satellite scenes via Iridium connection on-board Lance. The observations have been sent twice daily. After delivering the satellite image to Lance a map is produced manually using QGIS software. The system relies on the availability of the Sentinel-1 imagery distributed either via the Copernicus Scihub satellite portal (https://scihub.copernicus.eu) or the national satellite hub (https://colhub.met.no). For the specific dates 10 Radarsat-2 ScanSar Wide scenes have been ordered, processed and sent to Lance by Are Bjørdal. This was done in case no Sentinel-1 observations would have been available. All satellite observations for the previous 12 hour period have been aggregated and resampled to the regular spatial grid that covers Fram Strait area at 150 meters resolution. The resulting images were JPEG compressed to reduce the size of the transferred files to 2 MB or less. The core component of the system that performs satellite imagery search and delivery can be obtained at: https://github.com/npolar/satmaps.git

Figure 6.7: The workflow of the satellite sea-ice map production process

7. Radiosondes

2017 was the first year that we have launched radiosondes during the Fram Strait cruise. In total, we launched 28 radiosondes. These collected atmospheric observations of temperature, humidity, pressure, wind speed and direction, up to a maximum altitude of 28 km. In accordance with directions from the World Meteorological Organisation, the weather balloons were released daily from the ship at 11:00 UCT, such that the ascent was completed at 12:00 UCT. During the middle phase of the cruise, while closer to Greenland and in heavier ice conditions, a second radiosonde was released each day at 23:00 ECT.

The launching of radiosondes during Fram Strait was coordinated by Robert Graham (NPI). Data from the radiosondes was sent back to the ship and retrieved via a GPS and radio antenna. This Vaisala receiving system was on the helideck of Lance (Photo 1), by Marius Bratrein (NPI) and Robert Graham, on the afternoon prior to departure from Longyearbyen. The receiving system was connected to a laptop at the rear of the bridge. Data was logged on this laptop using the Viasala program Digicora. The Vaisala receiving system was loaned from the AWI-PEV station in Ny Ålesund. This was coordinated by Stephen Hudson (NPI) and Marion Maturilli (AWI).

The radiosondes we have used are the RS92-SGPL product from Vaisala. These were attached to a 350 g helium filled Totex weather balloon. In total we have used 28 radiosondes, 31 weather balloons and 3 x 300 dB canisters of helium. Each radiosonde launch took approximately 30 minutes, and was conducted by Robert Graham with the assistance of a second crew member or scientist. The balloons were launched from the ship's helideck (Photo 2). This area of the ship was chosen because it is a large open space, away from any sharp edges that may damage the balloon. Typically, radiosonde data are transmitted in near real time from the ground station to be incorporated in to GTS. This allows the data to be used for

the initialization of weather forecast models, and assimilated in to reanalyses products. However, for this campaign we have kept the radiosonde observations as an independent data set. We will use these data to evaluate the performance of the new atmospheric reanalyses ERA-5.

Historically, reanalyses products have performed relatively poorly in Arctic environments in comparison to the mid latitudes. In particular, they struggle to reproduce the observed strength and thickness of stable boundary layer inversions. These inversions form by cooling at the surface due to the cold water temperatures and/or

presence of sea ice, such that the atmospheric temperature increases with height (Fig. 1). Typically, reanalyses underestimate the strength of these inversions. We will investigate if there are improvements in ERA-5, over the older ERA-Interim, in the representation of stable boundary layer inversions. We will also investigate how improvements in resolution of topography around Greenland in ERA-5, may have improved the simulation of wind fields.

Appendix 1: moorings recovered

Rigg F1 Satt ut 10 Tatt opp A	1-18 SEP 2016, 09:200 .UG kl	78 48,998N UTC 03 01,559W	Dyp:	Fra bunn:	Ut:
	IPS	SNR. 51062	58	2390	09:09
	SBE37 5 m Kevlar	SNR. 3490	60	2388	09:09
	ADCP300	SNR: 17461	64	2384	09:09
	2 Glasskuler 1 m Kjetting galvan 10 m Kevlar	isert			
	Stålkule 37 McLa	ne	76	2372	
	1,0 m Kjetting galv 100 m Kevlar	anisert			
	50 (49)m Kevlar 50 m Kevlar 5 m Kevlar SBE37	SNR. 4702	281	2167	08:54
	4 Glasskuler (gule 2 m Kjetting galvan) isert			
, i	RCM9	SNR.1324	284	2164	08:54
Å	0,5 m Kjetting galv				
¥ ¥	200(204) m Kevlar 500(495) m Kevlar 500(498) m Kevlar 50 m Kevlar	К			
	SBE37 4 Glasskuler 2 m Kjetting galvan	SNR. 3552 isert	1532	916	08:36
₿ ₩ ₽	RCM11	SNR.494	1535	913	08:36
	0,5 m Kjetting galv 500(498) m Kevlar 200 (198)m Kevlar 200 (205)m Kevlar	K			
	SBE37 4 Glasskuler (gule) 2 m Kjetting galvani	SNR. 8821 sert	2435	13	08:20
Ň e	Seaguard	SNR.10071	2438	10	08:20
Å ¶	0,5 m Kjetting rustfr Svivel	i			
	AR861	SNR. 287			
8	3,5 m Kevlar				
ğ	3 m Kjetting galvani	sert			
			• • • •		

ANKER 1220/(980) kg

Rigg F Settes ut	5 12-18 9 SEP 2016 kl	78 49,156N 13:29 004 00,427W	Dyp:	Fra bunn:	Ut:
	IPS	SNR. 1047	57	1778	11:55
	SBE37 5 m Kevlar	SNR.3489	59	1776	11:55
	ADCP300	SNR: 17462	63	1772	11:27
8	0,5m Kjetting g	alvanisert			
Ī	2 x 10 m Kevlar				
	Stålkule 37	SNR. 596	85	1750	
8	1,5 m Kjetting	galvanisert			
¢	SBE37	SNR. 14097	151	1684	11:57
•	200 m Kevlar				
	SBE37	SNR.4837	276	1569	11:52
	4 Glasskuler 2 m Kjetting gal	vanisert			
r ie	RCM9	SNR. 884	279	1566	11:52
8	0,5 m Kjetting g 500 m Kevlar	alv			
+	500 m Kevlar 200 m Kevlar				
Ĺ	SBE37	SNR.3554	1479	366	11:25
	3 Glasskuler 2 m Kjetting gal	vanisert			
r ie	RCM11	SNR.235	1482	353	11:25
â	0,5 m Kjetting g	alv			
	200 m Kevlar 100 m Kevlar 40 m Kevlar				
	SBE37 4 Glasskuler 2 m Kjetting galv	SNR. 8822 vanisert	1822	13	11:10
Ň e	RCM11	SNR.228	1825	10	11:13
Ř	0,5 m Kjetting ru Svivel	ıstfri			
ļ	AR861	SNR. 182			

3,5 m Kevlar 3 m Kjetting galvanisert

• •

00

ANKER 1120/(940) kg

Rigg F Settes ut	13-18 8 SEP 2016, kl 1	78 50.283N 7:20 04 59.191W	Dyp:	Fra bunn:	Ned i vann:
•	IPS4	SNR. 51064	54	964	17:15
8	SBE37	SNR: 7056	56	962	17:15
	5 m Kevlar ADCP300	SNR: 16831	60	958	17:15
8	1,5 m Kjetting galv				
	5 m Kevlar				
	10 m Kevlar Stålkule 37 1,5 m Kjetting galv.		77	941	
	5 m Kevlar				
	Hvallydopptaker		84	934	17:07
b	0,5 m Kjetting galv. 50 + 20 m Kevlar				
	SBE37	SNR. 12232	155	863	15:00
	100 (103) m Kevlar SBE37	SNR.3993	256	762	16:57
00	3 Glasskuler 2 m Kjetting galv.				
	RCM9 0,5 m Kjetting galv	SNR.1327	259	759	16:57
	500 (498)m Kevlar l	К			
	200 (198)m Kevlar				
	50 m Kevlar SBE37	SNR.3551	1005	13	16:36
	4 Glasskuler 2 m Kjetting galv.				
₩E	RCM11	SNR. 561	1008	10	16:36
ĝ	0,5 m Kjetting rustfi	ri			
4	Svivel				
ð	AR861	SNR. 053			
f	3,5 m Kevlar				

3 m Kjetting galvanisert

ANKER 1110/(880) kg

ľ

Rigg F13B-3 Satt ut 8 SEP 2016, kl (78 50 09:08 005 3	0.266 N 30.873W	Dyp:	Fra bunn:	Ut:
	ICECat 25 m Wire Weak link	SNR. 13506	22	505	09:06
	1 m Kjetting 2 Glasskuler	galv.			
8	ICECAT mod	dem			
Ţ	ADCP	SNR.727	60	467	09:05
	3 m Kjetting 4 Glasskuler	galv.			
•	SBE37	SNR. 12234	65	462	08:33
	50 m Kevlar				
	SBE37	SNR. 12233	113	414	08:25
	1 m Kjetting 2 Glasskuler	galv.			
	RCM7	SNR. 9464	115	412	08:25
8	200 m Kevlar	r			
D	SBE37	SNR. 10295	166	361	08:16
•	200 m Kevlar	r			
	2 m Kjetting g	alv.			
	4 GLASSKUL	ER	516	11	
8	AR661	SNR. 291			
(5 m Kevlar.				
ģ	2 m Kjetting	galv.			
\bigcirc	ANKER	800/(620)kg	527	0	

Rigg F14-18	78 48,861N	Dyp:	Fra bunn:	Ned i vann:
Satt ut 7 SEP 2016, kl 13:23	006 30,09W			

IPS	SNR. 51127	57	215	13:07
4 Glasskuler 2 m Kjetting galv.				
SBE37 5 m Kevlar	SNR: 3492	61	211	13:07
ADCP 300 1 m Kjetting Galv. 0,5 m Kjetting Galv. 40 m Kevlar	SNR: 16876	65	207	13:07
SBE37	SNR: 14098	106	166	12:58
100 (102) m Kevlar				
50 (51) m Kevlar SBE56	SNR.3943	259	63	12:47
SBE56	SNR.3942	234	38	12:42
SBE37 4 Glasskuler 2 m Kjetting Galv.	SNR.3992	259	13	12:38
RCM9	SNR. 1046	262	10	12:38
Svivel				
AR861	SNR. 506			
3,5 m Kevlar				
2,5 m Kjetting				

ANKER 920/(740) kg

Rigg F17-13 Satt ut 7 SEP 2016, kl 09	78 5 9:08 008	50. 179 N 04.913W	Dyp:	Fra bunn:	Ut:
••••	ICECat	SNR. 13507	27	198	09:08
	25 m Wire Weak link				
	3 m Kjetting 4 Glasskuler	g galv. r			
	ICECAT M	odem			
	SBE16	SNR.6693	55	170	09:03
Y	40 m Kevlar	r			
	SBE37	SNR.2962	75	130	08:54
Ţ	10 m Kevlar	r			
	ADCP	SNR.7636	106	119	08:48
P poose	2 m Kjetting	g galv.			
	SBE16	SNR.6694	108	117	08:48
	100 m Kevla	ar			
þ	SBE56	SNR.3944	187	38	08:38
•	5 m Kevlar				
I	SBE37	SNR.7062	213	12	08:34
	2 m Kjetting	galv.			
	4 GLASSKU	LER	214	11	
	AR661	SNR. 110			
×	5 m Kevlar.				
8	2 m Kjetting	g galv.			
0	ANKER	815/(700)kg	225	0	

Appendix 2: moorings deployed

Rigg F17-14	78 50. 186 N
Satt ut 5 Sep 2017, kl 10:26 UTC	008 04.892W

3 m Kjetting g 4 Glasskuler	alv.	52	174	09:03
SBE16 0,5 m Kjettin 51 m Keylar	SNR.7212	54	172	09:03
SBE37	SNR. 13252	94	132	08:54
ADCP	SNR.17461	105	121	08:48
2 m Kjetting	galv.			
SBE16 0,5 m Kjetting	SNR.7339	108	118	08:48
99 m Kevlar				
SBE56 5 m Kevlar	SNR.3944	188	38	08:38
SBE37	SNR.14099	214	12	08:34
2 m Kjetting g	alv.			
4 GLASSKUI	LER	215	11	
AR861CS	SNR. 501			
5 m Kevlar.				
2 m Kjetting	galv.			
ANKER	800/(700)kg	226	0	

Rigg F14-19	78 48,848N	Dyp:	Fra bunn:	Ned i vann:
Satt ut 5 Sep 2017, kl 13:47 UTC	006 30,058W			

IPS	SNR. 51127	54	219	13:45
4 Glasskuler 2 m Kjetting galv.				
SBE37	SNR: 7058	60	213	13:45
ADCP 300	SNR: 24385	64	209	13:45
1 m Kjetting Galv. 0,5 m Kjetting Galv	Ι.			
100 m Kevlar				
50 m Kevlar				
SBE56	SNR: 3943	210	63	13:35
40 m Kevlar				
SBE56	SNR: 3942	235	38	13:30
SBE37	SNR.7057	260	13	13:18
4 Glasskuler 2 m Kjetting Galv.				
RCM9	SNR. 1325	263	10	13:18
Svivel				
AR861	SNR. 568			
3,5 m Kevlar				
2,5 m Kjetting				
ANKER 900/(740)	kg	273	0	

Rigg F13B-4	78 50.260 N
Satt ut 6 Sep 2017, kl 09:43 UTC	005 30.926W

Fra bunn:

Ut:

8

ICECat 25 m Wire Weak link	SNR. 15910	30	494	09:40
1 m Kjetting 2 Glasskule	g galv. r			
ICECAT m	odem			
ADCP	SNR.17462	57	467	09:35
2 m Kjetting 4 Glasskule	g galv. r			
0,5 m Kjetti SBE37	ing galv. SNR. 9853	61	463	09:30
41 m Kevla	r			
SBE37	SNR. 9852	101	423	09:27
1 m Kjetting 2 Glasskule	g galv. r			
SEAGUAR	D SNR. 883	103	421	09:27
0,5 m Kjetti	ng galv.			
200(199) m	1			
Kevlar SBE37	SNR 7059 Merket	154	370	09.15
SDLST	SIM. 7037 Merket	134	570	07.15
205 m Kevl	ar			
2 m Kjetting	galv.			
4 GLASSKU	ILER	513	11	
AR661	SNR. 410			
5 m Kevlar.				
2 m Kjetting	g galv.			
ANKER	800/(620)kg	524	0	

Rigg Satt ut	Rigg F13-19 78 50.324 Satt ut 6 Sep 2017, kl 13:48 UTC 005 00.146		Dyp:	Fra bunn:	Ned i vann:
	IPS5	SNR. 51064	49	961	13:45
₽					
	5 m Kevlar				
	ADCP300	SNR: 20021	54	956	13:45
	1,5 m Kjetting galv	V			
ß	SEACAT SBE16	SNR. 7253	55	957	13:45
	0,5 m Kjetting galv	V.			
•	10 m Kevlar Stålkule 37		65	947	
	5 m Kevlar				
	Hvallydopptaker		71	941	13:35
8	0,5 m Kjetting galv 20 m Kevlar 50 m Kevlar	v.			
•	SBE37	SNR. 3995	139	873	13:16
	100 m Kevlar SBE37	SNR.7060	239	773	13:11
	3 Glasskuler 2 m Kjetting galv.				
h <mark>e</mark>	RCM9 0,5 m Kjetting galv	SNR.1326 v	242	770	13:11
I	500(497) m Kevla	ır			
	100 m Kevlar 100 m Kevlar 50 m Kevlar SBE37	SNR. 13504	1007	15	12:56
	4 Glasskuler 2 m Kjetting galv.				
₿ <mark>₽</mark>	SEAGUARD	SNR. 345	1010	12	12:56
Å	0,5 m Kjetting rust	tfri			
q	Svivel				
ļ	AR861	SNR. 743			
₽	5 m Kevlar				

3 m Kjetting galvanisert

ANKER 1100/(880) kg

0

Rigg F12-19 Satt ut 8 Sep 201	9 7 09:05 UTC:	78 49,283N 004 01,373W	Dyp:	Fra bunn:
IPS	5	SNR. 51167	59	1783
SB 5 m	E37 n Kevlar	SNR.7055	61	1781
AD	CP300 5	SNR: 18151	65	1777
2 C 1,0 0,5 10 1	Glasskuler m Kjetting galvanis m Kjetting galv m Kevlar	sert		
Stål 1,0 0,5	lkule 37 5) m Kjetting galvani m Kjetting galv	SNR. sert	77	1765
• 200)(199) m Kevlar			

SBE37	SNR.3994	278	1564	08:42
3 Glasskuler 2 m Kjetting galvanis	sert			
RCM9	SNR. 836	281	1561	08:42
0,5 m Kjetting galv 500(498) m Kevlar				
500(497) m Kevlar 200(205) m Kevlar				
SBE37	SNR.13505	1494	348	08:22

1497

1827

1830

1842

345

15

12

0

3 Glasskuler 2 m Kjetting galvanisert

RCM11 SNR.556 0,5 m Kjetting galv 200(207) m Kevlar

100(101) m Kevlar 20 m Kevlar

SBE37

SNR. 10294 4 Glasskuler 2 m Kjetting galvanisert RCM11 SNR.117

0,5 m Kjetting rustfri Svivel AR861 SNR. 500

5 m Kevlar

3 m Kjetting galvanisert

ANKER 1190/(960) kg

Ut:

09:02 09:02

09:04

08:22

08:13

08:13

Rigg F11 Satt ut 9 Sep	-19 2017, 18:42 UTC	78 49,147N 003 03,189W	Dyp:	Fra bunn:	Ut:
	IPS	SNR. 51062	57	2396	18:35
	SBE37 5 m Kevlar	SNR. 3492	59	2394	18:35
	ADCP300	SNR: 18070	63	2390	18:35
	0,5 m Kjetting galvar	nisert			
	8 Glasskuler (gule)		65	2388	
	3 m Kjetting galvanis	sert			
Ĩ	100 m Kevlar				
	50 m Kevlar 50 m Kevlar				
	SBE37	SNR. 3996	270	2183	14:39
	4 Glasskuler (2 gule 2 m Kjetting galvanis	og 2 oransje) sert			
H B	RCM9	SNR.1049	274	2179	14:39
8	0,5 m Kjetting galv				
•	200(199) m Kevlar 500(510) m Kevlar 500(510) m Kevlar 20 m Kevlar				
	SBE37 3 Glasskuler (gule) 2 m Kjetting galvanis	SNR. 7061 sert	1517	936	14:18
H -	RCM11	SNR.538	1520	933	14:18
	0,5 m Kjetting galv 500(511) m Kevlar 200 m Kevlar 200 m Kevlar				
	SBE37 4 Glasskuler (gule) 2 m Kjetting galvanise	SNR. 8226 ert	2440	13	13:58
Ň e	Seaguard	SNR.834	2442	11	13:58
Å	0,5 m Kjetting rustfri Svivel				
8	AR861	SNR. 499			

[[[] 0 0 0

5 m Kevlar

3 m Kjetting galvanisert

ANKER 1230/(980) kg

0

Rigg F10-14 Satt ut 8 Sep 2017, 12:23 UTC		78 49,624N 001 57,048W	Dyp:	Fra bunn:	Ned i vann:
	ADCP 300 S	SNR: 16831	59	2591	11:37
	RCM9 S	SNR. 1175	61	2589	11:37
	SBE37 S	SNR.13253	63	2587	11:37
•	100 (101) m Kevlar				
	40 m Kevlar				
	20 m Kevlar				
•	10 m Kevlar				
	SBE37 S	SNR.14100	233	2417	11:25
	8 glasskuler 3 m Kjetting Galv.				
	SEAGUARD	SNR. 1846	236	2414	11:25
	0,5 m Kjetting Galv. 1	Med svivel.			
	4 x 500 (495,496,496	5,496) m Kevlar			
•	200 m Kevlar 100 m Kevlar 100 (98) m Kevlar				
•	5 m Kevlar				
	SBE37	SNR.8227	2635	16	10:54
	6 Glasskuler 3 m Kjetting Galv.				
	RCM8	SNR. 12733	2639	11	10:54
8 P	Svivel				
Į	AR861	SNR. 1424			
ĕ I	5 m Kevlar				
ß	2.5 m Kietting				
	ANKER 1000/(850) kg	2650	0	