

Fram Strait Cruise Report

1 – 16 September 2019

Cruise no. 2019707

Laura de Steur (laura.de.steur@npolar.no) Norwegian Polar Institute 9296 Tromsø, Norway

Table of Contents

1. Cruise Overview	3
2. Participants	4
3. Sailing log	5
4. Mooring operations during FS2019	7
4.1 Moorings recovered during FS2019	7
4.2 Moorings deployed during FS2019	9
4.3 ADCP calibrations FS2019	11
5. CTD Measurements	12
5.1 General Approach	12
5.2 CTD Package Configuration	13
5.3 CTD Sections	13
5.4 Salinity Sensor Validation	14
5.5 Dissolved Oxygen Sensor Validation	14
6. Biogeochemical Program	18
7. Sea ice work on Fram Strait 2019 cruise	22
7.1 General	22
7.2 Helicopter-borne sea ice thickness measurements (HEM-surveys) of ice thickness in the E	East
Greenland Current	22
7.3 Sea ice stations	23
7.4 Thin ice sampling	24
7.5 Ice observations from the bridge (ASSIST)	24
7.6 Ice service for the cruise	25
7.7 Daily activities during the cruise	25
8. Microplastic in sea ice, thin ice and sea water	27
9. Whale program	28
10. Drifter deployments	28
10. VMADCP and LADCP measurements	30
11. Outreach	30
Appendix A: LADCP script files (Master, Slave and Single head)	31
Appendix B: Moorings recovered and deployed	41

1. Cruise Overview

The objective of the annual cruise of the Norwegian Polar Institute to Fram Strait is to service the Arctic Outflow Observatory in the western Fram Strait. The purpose of this observing system is to monitor the properties of the Arctic freshwater, sea ice, and returning Atlantic water, as well as the state of ocean acidification, CDOM and nutrients in the East Greenland Current.

The main priority was to recover and redeploy seven NPI moorings across the East Greenland Current at 78°50' N, and to carry out the CTD/LADCP section including extensive water sampling for various tracers across the whole Fram Strait along the 78°50'N line. In addition, one CTD/LADCP section (Isle de France section) across the Belgica-Norske-Westwind trough on the east Greenland shelf, was carried out. D

Rather limited sea ice physics work was carried out across the East Greenland Current. This included in-situ work on some selected sea ice floes as well as on land-fast ice as far west as we could go on 78°50'N, and one helicopter flight with EM-bird. A new component to the sea ice work this year, was sampling for microplastics in sea ice. There was very little sea ice in the EGC and on the shelf this year, and it was hard to find floes from which to work on for sea ice and microplastic. The land-fast ice region on Belgica bank was very small relative to earlier years and it broke up just after we visited it.

Similar to 2018, there was a whale research programme deploying satellite transmitters on large whales, mainly bowhead whales, and tracking their movements in the following year, as well as collecting skin biopsies for genetic analyses. In ice covered water these tasks were conducted from a helicopter (Ecureuil 350) based on KPH.

Surface drifters across the shelfbreak East Greenland Current were deployed as part of a collaborative project with NIOZ, the Netherlands, to investigate the exchange of freshwater between the East Greenland Current and the interior basins. The drifters were typically deployed right after mooring recoveries or CTD stations.

The cruise hosted freelance journalist Cheryl Katz who covered the research in popular science articles for several magazines. In addition, Lawrence Hislop (REVocean) documented the cruise through photography and film as a collaboration with NPI.

Prioritization and timing of mooring operations, CTDs and flights were guided by sea ice images (Sentinel) send to the ship by the data management group at NPI.

2. Participants

Organisation

- 1. Laura de Steur (NPI, Cruise leader)
- 2. Paul A. Dodd (NPI, Cruise deputy)

Sea ice lead

- 3. Dima Divine (NPI)
- 4. Jean Negrel (NPI)

Microplastic sea ice:

- 5. Ingeborg Hallanger (NPI)
- 6. Vegard Sturzinger (NPI)

CTD/tracer/water sampling and analysis:

- 7. Colin Stedmon (DTU, Denmark)
- 8. Rafael Gonçalves-Araujo (DTU, Denmark)
- 9. Mischa Johannes Maria Saes (DTU, Denmark)
- 10. Thodoris Karpouzoglou (NPI)
- 11. Margot Debyser (University of Edinburgh)
- 12. Anne-Marie Wefing (ETH Zurich)
- 13. Flora Desmet (ETH Zurich)

Drifters:

- 14. Femke de Jong (NIOZ, Netherlands)
- 15. Elodie Duyck (NIOZ, Netherlands)

Whale research:

- 16. Christian Lydersen (NPI)
- 17. Kit Kovacs (NPI)
- 18. Martin Haupt (AWT, S. Africa)
- 19. Ola Rugland (helicopter pilot Airlift)
- 20. Harold Ederson (helicopter technician Airlift)

Technical Support:

- 21. Kristen Fossan (NPI, ocean moorings)
- 22. Jan Are Jacobsen (NPI, ocean moorings, sea ice)

Outreach:

- 23. Cheryl Katz (freelance journalist)
- 24. Lawrence Hislop (photography/film)

3. Sailing log

Thurs 29/09/2019	Arrival of most participants in LYB
Fri 30/09/2019	Clothing and gear from OLA-LYB. Survival suit course for 4p in morning, polar bear safety for non-NPI participants at NPI-LYB (not the full riffle course), and riffle + flare gun training for 6p (NPI mostly)
Sat 31/8/2019	Waiting for KPH to come in at 4pm. Last loading of pallets from OLA-LYB, and some unpacking after 4pm
Sun 01/09/2019	Checking in at 8:30. Unpack and install. Attempt to calibrate ADCP on land failed. Ready on board at 11:00. Departure at 13:20 (local time). Steaming all night to 0°W, 78°50'N for first CTD on main section.
Mon 02/09/2019	Arrival at 0°W, 78.50'N for first CTD at ~ 1000 (local time). CTD at 1°W. Mooring F10 recovery at 18:30 local time. Released but not in sight, takes \pm half hour to spot it, no ice but quite some waves and foggy, visibility about 1 nm. Continue with CTDs overnight at 2°, 2.5°W and 3.5°W. Start drifter deployments at 2°W and at each half degree onward.
Tue 03/09/2019	Arrival at 3°W / F11 at 7 am. Started with CTD here first. Recovery of F11 postponed because of bad weather, same for F12. Continue with CTDs on section 4°W, 4.5°W (first little bit of ice here), 5°W. Recover F13 first instead. at 16:40 local. Little sea ice here damps the waves. No sea ice work. Too bad weather for flight. CTD at 5°W and 6°W. Night: steam back to F11.
Wed 04/09/2019	Recovery of F11 (morning), F12 (afternoon), and F13 (after midnight). Couple of CTDs in between and EM-bird flight in the evening. Steam to F17 overnight
Thurs 05/09/2019	Arrival at F17 at 8 am. No mooring there. Communication with the release shows it was dragged by an iceberg ~1100 m to the east-southeast. Found the location with triangulation (78° 50.100'N, 8°7.782'W) and MB and EK showed that only release and some floats are there, no mooring instruments anymore. Do not start dredging since no time for it. May do so later in the cruise or else next year. Afternoon: flight for whale research and MOB operation to collect thin ice for microplastic. Continue with CTDs on the section from 8W to ~ 13.5 or 14°W until after midnight.
Fri 06/09/2019	7 am not quite done with CTDs, last one was at 13°W, then a lot of broken up land fast ice spread out. Detour a bit to the south first to continue north at 14°7'W to find land-fast ice, toke one final CTD at 14°7W on the section. Lots of fast ice has been broken up last days after the strong northerly winds causing swell. Cannot find proper land-fast ice to work on until 2pm. Get 3 groups out on ice. Stay here the rest of the day. Flights for whales: morning, afternoon and evening. ADCP calibrations did not go well, needed to change out ADCPs, batteries and still no success. At 11pm call for polar bear at 1000m distance, we are called back to ship. Wait here until next day to finish ADCPs (ship is moored to the anchored ice)
Sat 07/09/2019	Continue 3 ADCP calibrations on the fast ice 8am. Still no success. Need to have a double set of ADCPs for ALL moorings. Flight for whales. Pick up at 11:30 am.

	Steam to the start (NE) of the Isle de France section. Start there at 21:30 local time.
Sun 08/09/2019	All morning and afternoon CTDs on Isle de France. We cannot make it all the way through since lots of very heavy old broken up fast ice on the SW end of the section, had to give up the last 4 stations. Return around 5pm local time. Steam to ~78°50'N, 11°W. Looking for thin ice to do MOB operation for thin ice, but polar bear occurred twice, postponed to next morning.
Mon 09/09/2019	After 8am, look for thin ice, about 1 hr of sampling from 9-10 am local time. Steam straight east at 78°38'N to deploy drifters since there is too much ice in the north, then head north again to the main section. Flight for whales in afternoon. Do not reach F17 in good time (not until 11pm) so decided to take 4 more CTDs around 10-9W to fill in gaps during the night. This is where we see a jet on the shelf typically. CTD cable in main hangar got damaged, had to stop with moon pool CTDs, continued with 2CTDs with small rosette from CTD hangar
Tues 10/09/2019	Arrival at F17 at 7am,check ice and drift conditions. Deploy F17 after 8am, followed by a CTD. Decide to steam to F14 since there is a lot of ice and it may take several hrs. Deploy F14 at 4am. Continue to 5.5W to try to recover F13B in the evening. Followed by CTD at 5.5W. Night, one more CTD over 800 m isobath
Wed 11/09/2019	Third attempt to recover F13B, better visibility and ice conditions ok. Recover at 6:30 am UTC. Too much swell to do ice work, cancelled, postponed to afternoon. Prep for F13B deployment at 08:45 UTC. Deployment goes quick and easy. After lunch, still too much swell for ice work. Prep for F13 deployment after 13:30 pm UTC. Deployed at ~15:33 UTC, easy once the ship was positioned such to keep the fast drifting ice away from the back deck. After dinner: head to the north-northeast into more heavy pack ice to get rid of the big swell that comes from the southeast. Sea ice station (7p) on one floe, 2 small boat trips, quiet weather, no swell, in the evening. Move further northeast to find another floe for Thurs morning at 7am.
Thurs 12/09/2019	Ice station from 8:30-11:30 am north of F12 at approx. 79°10N and 4°W. Steam south to F12 mooring site. Take a calibration CTD (#238) before dinner and deploy the mooring F12 after dinner at 16:31 UTC. Prep wire for last two moorings to go out Friday. Steam to ~10nm north of F11 to try an ice station early Friday morning.
Fri 13/09/2019	Ice station cancelled because of fog despite the presence of lots of good floes. Too risky, polar bear danger with no visibility. Steam to F11 mooring site (78°50'N, 3W), take a calibration CTD and deploy F11 at13:48 UTC. Steam to F10 but slightly south of the section in order to avoid ice, deploy 3 more drifters before getting to F10 at ~2W. Deploy F10 finally at 19:34 UTC (21:34 local time). Continue eastward along the main CTD section to continue with the CTD work again at 1°E. Start there around mid-night.
Sat 14/09/2019	CTDs along the section to the east. Calm weather, flat seas. Start packing up (mooring gear) and cleaning. Writing reports!
Sun 15/09/2019	Finished the CTD section already at 8 am (local time). Very smooth sailing and calm weather. Spend time on the shelf break for the whale team while the CTD water sampling analysis is being done during the day (~12 hrs). No options to fly anymore, no whale sightings, sailing around Foraustlanded. Evening start steaming to LYB. Request from ship was to get in on Monday 8 am so that the CTD (moon pool) cable can be terminated and fixed.
Mon 16/09/19	Arrival in LYB very early am. Packing and cleaning.

4. Mooring operations during FS2019

The moorings (F11, F12, F13, F13B, F14) from the Fram Strait Arctic Outflow Observatory were recovered and redeployed. Unfortunately, F17 on the shelf (8°W) was lost, likely dragged by an iceberg since we triangulated the release to be 1 km west from the position.

F10 was recovered and serviced after two years, which is an attempt to continue the time series in the recirculation area and abandoned by AWI in 2016. The extra mooring F13B at 5.5°W for enhanced near-surface measurements (IceCAT in EGC core) was recovered and deployed again as well.

There were two IceCATs deployed (F13B and F17), both were lost. No data from F17 since while mooring was gone. Good data from F13B until Dec 2018 only. Likely it got hit by an iceberg since also the ADCP stopped working then. All other instruments were recovered in good shape. Both recoveries and deployments went extremely smooth since there was hardly any sea ice at all in the EGC during the cruise.

Mooring	Position	Depth (m)	Date and	Instrument	Serial #	Instrument
_			time (UTC)			depth (m)
F10-14	N 78° 49.624'	2657	Deployed:	ADCP	16831	65
	W 01° 57'.048		8 Sept 2017,	RCM7	1175	67
			12:23 UTC.	SBE37	13253	69
				SBE37	14100	239
			Recovered:	RCM Seaguard	1846	253
			2 Sept 2019,	SBE37	8227	2649
			16:43 UTC	RCM8	12733	2651
				AR861	1424	2654
F11-20	N 78° 49.161'	2474 m	Deployed:	IPS	51062	53
	W 03° 3.248'	(EK80)	9 Sept 2018,	SBE37	3490	56
			09:34 UTC	ADCP	18070	61
		vs 2488		SBE37	4702	269
		m (MB)	Recovered:	RCM9	1324	272
			4 Sept 2019,	SBE37	3552	1537
			07:28 UTC	RCM11	494	1539
				SBE37	8821	2452
				RCM8	10071	2455
				AR861	287	2460
F12-20	N 78° 49.270'	1864	Deployed:	IPS5	51167	59
	W 04° 1.327'		8 Sept 2018,	SBE37	3489	61
			09:25 UTC	ADCP	24385	65
				SBE37	7074	132
			Recovered:	SBE37	4837	281
			4 Sept 2019,	RCM Seaguard	884	288
			10:59 UTC	SBE37	3554	1491
				RCM11	235	1493
				SBE37	8822	1834
				RCM11	228	1836
				AR861	182	1839

4.1 Moorings recovered during FS2019

F13-20	N 78° 50.392'	1045	Deployed:	IPS	51064	47
	W 04° 59.485'	(too deep,	7 Sept 2018,	SBE37	7056	55
		mooring	10:44 UTC	ADCP	16876	60
		length		AURAL	NA	82
		off?	Recovered:	SBE37 (extra)	12234	112
		ADCP at	3 Sept 2019,	SBE37	12232	162
		50m. MB	14:40 UTC	SBE37	3993	264
		ok with		RCM9	1327	267
		2017 data.		SBE37	3551	1020
		EK80		RCM11	561	1022
		off?)		AR861	053	1027
F13B-5	N 78° 50.261'	530 m	Deployed:	SBE37-IM weak	13506	15 (62!)
	W 05° 30.848'		6 Sept 2018,	link		60
			12:53 UTC	ADCP	727	58
				ICEBOX	N/A	N/A
			Recovered:	SBE37	12233	no data
			11 Sept	RCM7	7718	100
			2019,	SBE37	10295	149
			06:38 UTC	AR661	291	504
F14-20	N 78° 48.870'	272	Deployed:	IPS	51138	50
	W 06° 30.055'		6 Sept 2018,	SBE37	14097	54
			08:35 UTC	ADCP	20021	60
				SBE37	14098	101
			Recovered:	SBE56	3943	204
			4 Sept 2019,	SBE56	3944	229
			22:35 UTC	SBE37	3992	256
				RCM9	1046	258
				AR861	506	262
F17-15	N 78° 50.175'	226	Deployed:	SBE37-IM (no	15910	
	W 08° 4.879'		5 Sept 2018,	DL)		
			14:03 UTC	SBE16	6693	
				SBE37	2962	
			Lost: taken	ADCP	7636	
			by an	SBE16	6694	
			iceberg :(SBE56	3944	
				SBE37	7062	
				AR661	110	

Table 4.1: Moorings recovered during FS2019. See mooring diagrams at the end of the cruise report.

Notes:

- ! F10 recovered in good shape after two years.
- ! The IceCAT on F13B was lost, good data until Dec 2018 at 15m, after that, it fell down to 65m. It completely stopped in March. Likely it was hit by an iceberg in March since then the ACDP also stopped working... The Microcat at 100m depth SN 12333 stopped after 10 days, leakage in battery pack. Send to Seabird but it was indeed flooded and they could not retrieve data.
- ! Data from SBE37 SN 7056 from F13 could not be downloaded, need to send to Seabird to have it checked. There they could extract the data, we got it in xml format / plain text.
- ! F17 was lost; release was dragged ~1000 m west, likely by an iceberg. No instruments anymore, release was located, see log, and perhaps dredge for release later or next year.

4.2 Moorings deployed during FS2019

Mooring	Position	Depth (m)	Date and	Instrument	Serial #	Instrument
			time (UTC)			depth (m)
F10-15	N 78° 49.623'	2663 m	Deployed:	ADCP	18070	50
	W 01° 57.036'		13 Sept 2019,		(dir only)	
		(EK80	19:34 UTC	RCM9	1175	52
		likely 10		SBE37	7059	54
		m off, top		RCM7	9464	180
		is 50 m		SBE37	14099	222
		below		SBE37	8226	2634
		surface)		Nortek Aquadopp*	930	2639
				AR861	506	2640
F11-21	N 78° 49.121'	2454 m	Deployed:	IPS5	51062	44
	W 03° 3.072'		13 Sept 2019,	SBE37	3492	46
		added 10	13:48 UTC	ADCP	17462	50
		m kevlar		SBE37	3996	273
		(EK80		RCM9	1049	276
		likely 10		SBE37	7061	1526
		m off, IPS		RCM11	538	1529
		is just 43		SBE37 (re-used)	8821	2439
		m under		RCM Seaguard	834	2442
		surface)		AR861	499	2445
F12-21	N 78° 49.274'	1830 m	Deployed:	IPS5	51167	60
	W 04° 1.332'	(EK 1850	12 Sept 2019,	SBE37	7055	62
		m?)	16:31 UTC	ADCP	20021	66
				SBE37	3994	278
		(EK80 is		RCM9	836	282
		likely 12		SBE37	13505	1482
		m off, top		RCM11	556	1486
		is ~ 64 m		SBE37	10294	1816
		below		RCM11	117	1819
		surface)		AR861	500	1820
F13-21	N 78° 50.346'	1012 m	Deployed:	IPS	51140	50
	W 04° 59.959'		11 Sept 2019,	ADCP	18151	56
			15:33 UTC	SBE16	7253	59
				AURAL	n/a	72
				SBE37	3995	147
				SBE37	7060	245
				RCM9	1326	248
				SBE37	13504	996
				RCM Seaguard	345	1000
				AR861	743	1002
F13B-6	N 78° 50.213'	524 m	Deployed:	SBE37-IM weak	21029	34
	W 05° 30.149'		11 Sept 2019,	link		
			09:40 UTC	ICEBOX	n/a	60
				RCM Seaguard	883	65
				SBE37	9853	67
				SBE37	9852	106

				AR661	410	519
F14-21	N 78° 48.884'	269 m	Deployed:	IPS	51138	46
	W 06° 30.001'		10 Sept 2019,	SBE37	7058	52
			14:34 UTC	ADCP	17461	56
				SBE37 (re-used)	7054	100
				SBE56	3943	207
				SBE37	7057	257
				RCM9	1325	260
				AR861	568	261
F17-16	N 78° 50.180'	226	Deployed:	SBE37-IM weak	21024	24
	W 08° 4.798'		10 Sept 2019,	link		
			07:06 UTC	SBE16	7212	54
				SBE37	13525	105
				ADCP	24518	105
				SBE16	7339	108
				SBE56	3942	180
				SBE37 (re-used)	14098	214
				AR661	501	216

 Table 4.2: Moorings deployed during FS2019. (* Full SN of Nortek Aquadopp: 42836-1-930)

 See mooring diagrams at the end of the cruise report.

Notes:

SBE37 recovered in 2019 and redeployed again:

--> Redeployed SN 14098 (from F14-20) on F17-16

--> Redeployed SN 7054 (from F12-20) on F14-21

--> Redeployed SN 8821 (from F11-20) on F10-15

Send 2 SBE37for repairs in Sept:

- --> SN 12233 had leakage in battery pack, stopped after 10 days. No useful data.
- --> SN 7056 the data could not be uploaded, Seabird did so and send as xml plain text. OK

Calibration cast on CTD down to 1820 m were done for:

- --> SN 8227 (F10 bottom)
- --> SN 8821 (F11 bottom)
- --> SN 8822 (F12 bottom)

4.3 ADCP calibrations FS2019

The calibrations of ADCPs on land-fast ice (6-7/9/2019) did not go at all for three ADCPs. In addition, the ADCP deployed on F10 could not finalize a 360° compass calibration and an RCM9 was added underneath it to obtain direction. This resulted in that we did not have a sufficient amount of well-calibrated ADCPs to deploy one on F13B. See details below.

- ! 3 ADCPs were calibrated in Tromsø (2/7/2019)
- ! We tried to calibrate one new one (SN 24518) in LYB (1/9/2019). This failed. Comm error. Exchange memory card and try on ice. After several attempts it remained with a large error.

F17	F14	F13B	F13	F12	F11	F10 deploy for 2 years
Attempt in LYB: bad memory card. Exchanged with another one and calibrated on fast ice. Use look-up table for post-cal.	Calibrated in Tromsø	No calibrated ADCP to deploy. Only RCM here.	Calibrated in Tromsø	Calibrated on fast ice	Calibrated in Tromsø	Attempt to calibrated on ice failed, deploy with an RCM
Error after cal: 12.8°	Error after cal: 1.4°		Error after cal: 1.0°	Error after cal: 2.8°	Error after cal: 2.4°	No calibr. Error in dir, speed only!
Lithium	Lithium		3 alkaline	3 alkaline	Lithium	3 alkaline
BTM track	ICE track		BTM track	BTM track	ICE track	BTM track
SN 24518 (=new)	SN 17461		SN 18151	SN 20021	SN 17462	SN 18070

 Table 4.3: ADCP deployment plan 2019.

5. CTD Measurements

Figure 5.1. CTD stations completed during FS2019. Where two stations occur at the same location, the number of the second station is offset for readability.

5.1 General Approach

The CTD used was an SBE911+ unit. The T, S and O_2 ducts was flushed with Triton-X and freshwater between stations, and then rinsed with seawater just before deployment, to avoid problems with icing. At the beginning of stations the CTD was lowered to 10 dbar and allowed to soak until the pump started and sensors stabilised. The CTD was then brought to the surface and then lowered to within 10 m of seabed as determined using the altimeter. The CTD and deck unit were powered on ca. 10 minutes before the beginning of each cast to allow the lamp in the ISUS nitrate fluorometer to warm up and stabilise. Data acquisition was generally initiated just before deployment with the CTD on deck and allowed to run until the CTD was back on deck at the end of the cast.

Where possible the CTD was lowered over the side of the ship in the conventional way. Due to dense ice along the Isle de France section the CTD was lowered though a moon pool. The lower aperture of the moon pool was 10 m below the surface, so the upper 10 m of these profiles describes water trapped in the moon pool rather than the natural environment. Niskin bottles were closed

using the bottle fire command within the Sea-Bird acquisition software so that a .bl file was created for each deployment when bottles were fired. Note that on some stations only odd-numbered bottles were used. NMEA time and position information was fed to the acquisition computer and added to each scan line of the data files. Cast positions and starting times were also automatically added to the header of all data files. Note that the first station completed during Fram Strait 2019 has the number 194 and not 001. The vessel operators specify numbers assigned to CTD stations. The first cast each year has the number 1 and subsequently casts are numbered sequentially.

Channel	Sensor	Serial Number	Last Calibration	
Frequency	Temperature 1	4534	19-May-2019	
Frequency	Conductivity 2	2860	09-May-2019	
Frequency	Pressure	12162	19-Dec-2017	
Frequency	Temperature 2	5884	21-May-2019	
Frequency	Conductivity 2	4386	09-May-2019	
A/D Voltage 0	SBE43 Oxygen 1	3636 (Stns. 194-194)	05-Dec-2017	
		3785 (Stns. 195-end)	04-Dec-2018	
A/D Voltage 1	Altimeter	73084	24-Dec-2017	
A/D Voltage 2	SBE43 Oxygen 2	3115	05-Jun-2019	
A/D Voltage 3	CDOM Flourometer	FLCDRTD-1930*	25-Jul-2019	
A/D Voltage 4	Transmissometer	CST-1839DB	14-Dec-2017	
A/D Voltage 5	Chl. Flourometer	FLRTD-1547 (Stns. 194-203)	01-Apr-2016	
A/D Voltage 6	ISUS V3	232	User Polynomial	
	NO ₃ Flourometer	(Stns. 204-237)		
A/D Voltage 7	Free	N/A	N/A	

5.2 CTD Package Configuration

Table 5.1: CTD package configuration during FS2019. Primary Oxygen sensor SBE43 3636 was replaced with SBE43 3785 after station 194. CDOM fluorometer FLRCTD1930 has an internal gain setting (AsV) which can be varied between 1, 2 and 4. AsV was set to 1 during FS2019 (maximum gain, smallest range). On previous Fram Strait cruises the AsV was probably set to 2. The ISUS V3 was only deployed at stations shallower than 1000 m over the East Greenland Shelf (203-237) due to operating limits.

5.3 CTD Sections

Very open drift ice conditions on the East Greenland Shelf allowed the vessel to move along two

sections during the cruise (Figure 5.1). Station times and the types of samples collected are summarized in Table 5.3:

- 1. <u>Main Fram Strait Section</u> (Figure 5.2): An east-west section along the Fram Strait mooring array line at 78°50'N, which is repeated annually. During Fram Strait 2019, stations were completed between 010°E and 013.5°W. Station spacing was 1°longitude (~20 km) for most of the section and 0.5°longitude (~10 km) in the cores of the inflow and outflow and over the East Greenland Shelf.
- 2. <u>Isle de France Section</u> (Figure 5.3): A high-resolution section across the Belgica-Norske Trough on the East Greenland continental shelf close to Isle de France. This section begins at the northwestern tip of Isle de France and crosses the complete trough. The Isle de France section has been completed annually since 2013 and serves an extension to the main section, which cannot be extend west of about 14°W due to perennial fast ice.

5.4 Salinity Sensor Validation

Water samples for laboratory salinity measurement were collected along the main Fram Strait stations and at selected stations along the Îsle de France section. At stations where tracer samples were collected, salinity samples were collected at <u>standard depths</u> of 1, 5, 15, 25, 50, 75, 100, 150, 200, 250 and 400 dbar, plus one sample from the bottom of the water column.

Salinity samples were analysed on broad using Guildline Portasal portable salinometer (serial number 70177), which was standardised after every 24 measurements using IAPSO P-series standard seawater from batch 163.

Comparison of laboratory salinity measurements and CTD-salinity measurements revealed an offsets of 0.001 practical salinity units for both the primary and secondary sensor groups (Figure 5.4). The mean difference between both the primary and secondary sensor group and the laboratory measurements was, smaller than the precision of laboratory salinity measurements (+/- 0.003) so no correction is made here.

Both sets of CTD sensors performed well during the cruise. The small offsets determined relative to the laboratory salinity measurements and excellent agreement between primary and secondary sensor groups reflects the very recent calibration of the conductivity sensors. Freshly calibrated primary and secondary sensor sets deployed during the 2017 Fram Strait cruise showed similar mean offsets of +0.0007 and +0.0008 practical salinity units. Sensors deployed during the 2018 Fram Strait Cruise, which had been used for more than 8 months without calibration showed larger offsets of 0.003 and 0.004, and approached the level where post-calibration would be necessary.

5.5 Dissolved Oxygen Sensor Validation

Water samples for laboratory oxygen measurement were collected at standard depths of 400, 1000 and 2000 dbar and at the bottom of the cast at stations along the main and Îsle de France sections. Samples were collected in triplicate in volume-calibrated glass bottles, with an angled glass stopper. A silicon tube was attached to the spigots of the Niskin bottles and inserted to the bottom of the sampling bottles, which were filled slowly to minimise exposure to the atmosphere. Winkler reagents 1 and 2 were added to the samples immediately after sampling and samples were then stored under water, and allowed to reach room temperature to allow volumetric consistency with reagents added during analysis.

Analysis followed standard protocol using a Metrohm Ti-Touch potentiometric titrator, with a 2 ml dosing unit filled with 0.1M thiosulphate. Samples were run in 7 batches of 3 to 30 samples. Sets of 4 blanks were run before and after each batch of samples and 4 measurements of an internal

iodate standard (0.01M, prepared at NPI in Tromsø on 19-June-2019) were run before each batch of samples.

Comparison of laboratory oxygen measurements and CTD-oxygen measurements revealed an offset of 4.16 μ mol l⁻¹ for the primary sensor and an offset of 0.62 μ mol l⁻¹ for the secondary sensor (Figure 5.4). The primary sensor had not been serviced / calibrated for more than 8 months before the cruise and this may be the reason for the large difference with laboratory measurements and the abnormal shape of the sensor/laboratory histogram.

Figure 5.2: CTD measurements along the Main Fram Strait Section; Measurements from the primary temperature (top panel) and salinity (bottom panel) sensors. Station numbers are indicated above sections.

Figure 5.3: CTD measurements along the Îsle de France Section Measurements from the primary temperature (top panel) and salinity (bottom panel) sensors. Station numbers are indicated above sections.

Figure 5.4: Histograms showing the difference between the primary (left hand panels) and secondary (right hand panels) sensor groups on the CTD and laboratory salinity and dissolved oxygen measurements. Only points deeper than 400 m are considered for salinity validation, due to step salinity gradients close to the surface.

6. Biogeochemical Program

Table 6.1 lists sample types that were collected from Niskin bottles and melted sea ice cores. Samples marked with an asterisk were analysed onboard, other samples will be analysed ashore.

Variable	Description
Laboratory Salinity*	Used to validate and (if necessary) calibrate conductivity sensors on the CTD. Required to obtain representative salinity values for Niskin bottles closed in steep salinity gradients, where CTD salinity values are unsuitable.
Dissolved Oxygen*	Used to validate and (if necessary) calibrate dissolved oxygen sensors on the CTD. Dissolved oxygen is a basic parameter, which can be used to estimate water mass ages, interpret how non-conservative parameters have been affected by biological interactions and to trace Pacific water in combination with dissolved nitrate measurements.
Dissolved Inorganic Carbon (DIC) & Total Alkalinity (A _T)	Used to investigate the carbonate system, including estimation of carbon fluxes and monitoring of the ocean acidification state.
Dissolved Organic Carbon (DOC)	Used to investigate the carbonate system, including estimation of carbon fluxes. NB: Measured from nutrient bottle samples.
Nitrate, Nitrite, Phosphate & Silicate*	Used to investigate nutrient cycling in Arctic Ocean, to trace Pacific Water and to calibrate the ISUS nitrate fluorometer deployed on the CTD, which measures continuous profiles of dissolved nitrate. NB: Duplicate sampling planned in case of problems with onboard measurements.
Coloured Dissolved Organic Matter (CDOM)*	Used to trace fresh water masses in the Arctic Ocean, to investigate the optical properties of the water column and to help interpret carbonate system measurements. CDOM samples are used to calibrate the CDOM fluorometer on the CTD, which measures continuous profiles of CDOM, which responds to a single excitation wavelength.
Stable Nitrogen & Silicon Isotopes	Used to map the isoscape in Fram Strait – the isoscape is used to interpret isotope ratio measurements in organisms from the perspective of describing food webs. Also used to validate nutrient and nutrient-oxygen ratios employed to trace Pacific and Shelf waters, which are affected by nitrifying and de-nitrifying organisms.
Stable Oxygen Isotopes (δ ¹⁸ O)	Used to separate sea ice meltwater from river input & precipitation. Combined with CDOM and/or total alkalinity measurements δ^{18} O is also be used to identify freshwater from precipitation.
¹²⁹ I	Used to trace Atlantic-derived water masses circulating in the Arctic Ocean basin. Also used to study the fate of anthropogenic radionuclides released by fuel reprocessing.

²³⁶ U	Combined with ¹²⁹ I, ²³⁶ U provides more information about the age and pathways followed by Atlantic-derived water masses.
²³³ U	Combined with ¹²⁹ I, ²³³ U provides more information about the age and pathways followed by Atlantic-derived water masses.
¹³ C	Used to estimate the age of various water masses.

Table 6.1 – Variables measured from water samples collected during FS2019

Samples collected from the water column

Table 6.2 lists the water samples collected at each CTD station. During the cruise a paper log sheet was completed at each CTD station listing the depths at which bottles were fired and the samples taken from each bottle. Times, depths and positions manually recorded on log sheets are indented as a backup in the case of a problem with the data acquisition, not a replacement for electronically logged time and position data. There were no problems with time or position data during the cruise.

Station	Salinity	Winkler	δ ¹⁸ Ο	Nutrien ts	A _T -C _T	$\delta^{15}N$	δSi	¹²⁹ I	²³³ U	²³⁶ U
194	20		12	12	12	12	10	11		11
195	12	9	12	12	12	12				
196	15	9	12	12	12	12		10		10
197	16		12	12						
198	16	9	12	12						
199	15		12	12	12	12	9	11		11
200	14		11	11	11	11		11		11
201	15		12	12						
202	12		12	12	12	12	9	8		8
203	11		11	11	11	11		7		7
204										
205	10	3	10	10						
206	10	3	10	10	10	10	8	6		6
207										
208	10		10	10	10	10		5	12	6
209	0									
210	9		9	9	9	9		6		
211										
212	10	3	10	10	10	10	8	5	10	5
213										
214	11	3	11	11	11	11		6		
215										
216	9	3	9	9	9	9	8	6	12	6
217			0							
218	9		9	9						
219	8		8	8						
220	6	3	6	6	6	6	5			
221										

222										
223										
224	12	3	12	12	12	12	10			
225										
226	12		12	12	12	12		8		8
227										
228	10	3	10	10	10	10	8			
229										
230	10	3	10	10	10	10	8			
231		3								
232		6								
233		3								
Station	Salinity	Winkler	$\delta^{18}O$	Nutrien ts	A_T-C_T	$\delta^{15}N$	δSi	¹²⁹ I	²³³ U	²³⁶ U
234										
235	11	6	11	11						
236	12	9	12	12						
237		3								
238										
239		3								
240	12	3	12	12	12	12				
241	12		10	10	10	10		9		9
242	12		12	12						
243	12		12	12	12	12	9			
244	12	6	12	12						
245	12		12	12	12	12				
246	12		12	12	12	12	9			
247	12	3	12	12						
248	12		12	12	12	12	8	9		
249									12	
250	12		12	12						
251	10		10	10	10	10		6		6
252	9		9	9						
253	6		6	6	6	6	5			

Table 6.2 Number of each type of water sample collected at each CTD station.

Samples collected from melted sea ice cores

Sea ice cores for biogeochemical analysis were collected from sea ice at the locations shown in Figure 6.1. Whole cores were melted onboard in a single container and meltwater samples were collected for the following analyses:

- ! Laboratory Salinity
- ! Stable Oxygen Isotopes (δ^{18} O)
- ! Nitrate, Nitrite, Phosphate & Silicate
- ! Coloured Dissolved Organic Matter (CDOM)
- ! Total Alkalinity (A_T)
- ! ²³⁶U

7. Sea ice work on Fram Strait 2019 cruise

7.1 General

The sea ice work on Fram Strait 2019 cruise was coordinated by Dmitry V. Divine (NPI), with a support from Jean Negrel (NPI), Paul Dodd (NPI), Microplastic group of Ingeborg Hallanger (NPI) and Vegard Sturzinger (NPI), and the CTD team members during stations on the ice.

As in the previous two years, the sea ice situation in Fram Strait at the transect latitude was not favorable for sea ice research, with very open pack ice (ice concentration 0.1-0.3) west of 2°W in the core of the ECG and open water almost all the way to 12°W. Sea ice work was further hampered by a relative shortness of the cruise this year and unfavorable weather conditions: twice sea ice stations had to be canceled due to safety reasons such as swell and fog.

Altogether we made 5 sea ice stations (see Table 7.1) which include three regular ice stations on drift ice and two thin ice sampling. A majority of sea ice observed outside fast ice area during the cruise was a thick second year/multiyear ice, often ridged and deformed with a thickness from visual observations exceeding 2 - 4 m. The floe sizes preferentially small in the range of 20-60 m. Fast ice area next to Greenland experienced a continuous swell triggered break up in the weeks preceding the cruise and during the cruise. We observed that drift ice in fast ice area might actually originate from this fast ice.

Regular sea ice observations using ASSIST protocol were also made by D.V. Divine while RV KPH was in the ice covered waters.

7.2 Helicopter-borne sea ice thickness measurements (HEM-surveys) of ice thickness in the East Greenland Current

Via collaboration with a group on whale research (Lydersen and Kovacs) we conducted an aerial regional scale sea ice survey in the area of the core of the East Greenland current. During a 1 hour and 25-minute-long flight some 120 km of sea ice covered area along the flight track was studied using a helicopter-borne electromagnetic instrument EM-bird (Figure 6.1)

Figure 7.1. HEM-survey flight track. Note that the sea ice image was acquired some 2 days prior to the flight and do not exactly corresponds the real ice situation during the flight. Interpretation of the derived data including a conversion to the actual sea ice thickness will follow.

7.3 Sea ice stations

On three main sea ice stations (S2, S4, S5) we collected ice cores for salinity and temperature analysis, chemical analyses, micro-plastic particles (collaboration with ocean microplastic group) and for archive storage and later analysis of the microstructure. Stations 1 and 3 were stations on thin ice. On every full sea ice station, 1 to 3 tracer cores were additionally collected by Paul Dodd (NPI) and his team. Stations positions are found in Table 7.1, and also shown in the main map for the cruise.

On a longer station on fast ice, sea ice thickness of the floe was additionally surveyed directly by thickness drilling and indirectly using a Geonics EM31-MK2 short (EM31SH). The EM31 is placed on a sledge and pulled over the ice; the data including GPS position is logged at a frequency of 0.5 Hz to an Archer II field computer. Thickness drillings were done on selected spots for calibration and validation, and ice thickness and freeboard were measured with a Kovacs thickness gauge. The data acquired will be analysed later.

All three main stations featured rather think (2-3 m) and fresh ice according to salinity measurements; suggesting the ice floes surveyed were Second- or Multiyear ice.

Figure 7.2: Edge of multiyear fast ice east of Greenland. Note a relatively high melt pond fraction (some 30-40%) and a highly variable surface topography. Photo Lawrence Hislop.

Due to limited snow cover (0-2 cm thick crust/scattering layer) and no significant precipitation events throughout the cruise, we did not use Magna Probe for measuring snow thickness. Instead, the scatter layer thickness was manually logged during the EM31SH transects/ coring.

7.4 Thin ice sampling

The thin ice samples on Sea ice stations 1 and 3 were collected from the small boat. In addition we sampled thin ice from the Sea ice station 5 ice floe edge. Temperatures, salinity, thickness, and visual information were collected. Altogether, we had three thin ice sampling spots for each station. New ice formation whenever observed, was also registered in ASSIST.

Figure 7.3: Sea ice station 5; thin ice sampling procedure from the floe edge, 12.09.2019

7.5 Ice observations from the bridge (ASSIST)

Sea ice conditions were observed every one to three hours, except for the night time between midnight and 6:30, from the observation deck of RV KPH. Various sea ice parameters including sea ice types, floe sizes, snow cover, ridges, rafting etc. were recorded along with ship data (position, speed, and heading) and meteorological data (air and water temperature, air pressure, wind speed and direction, and humidity). Digital photos were taken with each observation (3 photos, looking out towards port, bow, and starboard. In total some 60 observations were made during the cruise while RV KPH was in the ice zone.

7.6 Ice service for the cruise

In order to ensure efficient implementation of the cruise plan during operation/steaming in ice covered waters, sea ice group was responsible for providing satellite-based sea ice charts. The ice charts for the cruise were made on a regular, daily to twice-daily basis depending on the planned activities and the focus area. In total 18 ice charts were compiled, example is shown in Figure 7.4.

-17.5 -17.0 -16.5 -16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 Figure 7.4: Ice chart from 06.09.2019 showing the breaking-up fast ice east of Greenland shore. The chart was used to navigate around the broken off piece to fast ice edge and sea ice station 2 site. Radar image Sentinel-1

7.7 Daily activities during the cruise

A detailed description of sea ice station activities with station logs and photos is available in the cruise data collection, see folder "Sea Ice". Table 7.1 below shows a brief overview of FS2019 daily activities related to the sea ice work.

Date	Day	Stn #	Time (UTC)	Latitude (start)	Longitude (start)	Task/activities
01.09.2019	1		10:00			departure LYR; assembling EM-bird
02.09.2019	2					Transit - Instrument maintenance; testing EM- bird
03.09.2019	3					Data work, ASSIST observations
04.09.2019	4		18:45	78° 51.1'	-4° 59.1'	EM-bird flight
05.09.2019	5					Ice free area, data logging and analysis; working with

						ice charts and navigation towards fast ice
06.09.2019	6	S2	14:10	78.99	-14.26	Station on fast ice. Coring, Thickness drilling, EM31 surveys
07.09.2019	7	S3	08:10	78° 40.3'	-14° 28.9'	Bear guarding for ADCP calibration, data logging, and packing/analyzing collected samples from ice stations 1 and 2
08.09.2019	8					Office work, sea ice observations.
09.09.2019	9	S3	07:23	78° 38'	-12°30'	Thin ice station 3, data work
10.09.2019	10					Data analysis and processing; on stand by for sea ice station between 8 and 6 W. Moving slowly due to very thick pack ice in 4-6 miles wide strips.
11.09.2019	11	S4	19:40	79.0	-4°34'	Station on drift ice. Ice Coring, Thickness Drilling
12.09.2019	12	S5	07:00	79.144	-4.202	Station on drift ice. Ice Coring, Thickness Drilling
13.09.2019	13					Station on drift ice cancelled due to weather conditions.
14.09.2019	14					Packing EM-bird, report writing
15.09.2019	15					equipment maintenance and packing, report writing
16.09.2019	16					Arrival LYR; unloading KPH

 Table 7.1: An overview of all visited stations including tasks/activities.

8. Microplastic in sea ice, thin ice and sea water

Microplastic has been found everywhere in the Arctic. The highest levels of microplastic ever recorded are within sea ice with 38-20 000 microplastic particles per litre of sea ice. As a comparison, there are 0.00034 microplastic particles in a litre of seawater. The difference in number of microplastic between seawater and sea ice is huge and raise the question if sea ice has other sources for microplastic. Atmospheric transport of microplastic is possible and needs to be investigated.

This project will measure the amount of microplastic in sea ice cores, seawater from under the ice, a transect of sea water samples across the Fram strait and thin ice to answer how microplastic behaves in this environment. This will be used to identify sources of microplastic to sea ice, such as atmospheric transport or uptake through sea water. This project will also give us information on the exposure of microplastic to sea ice associated organisms. This knowledge can be used in modelling to explain how microplastic is incorporated into ice, and how microplastic can affect organisms.

Sea ice and sea water under ice

At ice station 2 in the Greenland fast ice, three sea ice cores were drilled for microplastic analyses. Through the core holes sea water was pumped up through filters. A total of 4 sea water samples were collected with volumes from 1.08 to 1.88 m³.

Onboard sea water filtration for microplastic

The sea water inlet at 4 meters depth was used to sample high volume samples during the cruise. Water was collected before the filters for the onboard sea water system.

Thin ice sampling for microplastic

Samples of thin ice were collected from 5 locations during the cruise. Sample were collected by hand from the workboat (1-4) or from the side of an ice flow (5). At each location triplicates with approximately 3.5 litres of thin ice, and a blank sample, was collected.

Location	Date	Latitude N	Longitude W
1	05-09-2019	78° 50.106'	8° 31.95'
2	05-09-2019	78° 50.15'	8° 33.27'
3	05-09-2019	78° 50.23'	8° 35.009'
4	09-09-2019	78° 38.38'	12° 30.48'
5	12-09-2019	79° 14.411'	4° 20.238'

Table 8.1: Overview of thin ice sampling stations for microplastic

9. Whale program

The Fram Strait phase of the ICE-whales project in 2019 is nearly at an end. Weather conditions were largely conducive to searching, but ice conditions in the Greenland coastal polynya system were heavy (vast amounts of glacier ice in particular) and there were no bowheads sighted anywhere on the shelf. We only encountered four bowheads on the entire expedition, all in the mid-strait drift ice. One individual was tagged (sat, limpet) and biopsied. Narwhal were more numerous both coastally and in the drift ice, and we have done novel collections of biopsies from this population, which has never before been sampled. These samples will produce exciting scientific results when compared with the neighbouring population to the west on a variety of fronts (genetics, isotopic analyses of diet etc).

10. Drifter deployments

Surface drifters were deployed as part of the EGC DrIFT (East Greenland Current Drifter Investigation of Freshwater Transport) study. This project is funded by NWO (Netherlands Science Organisation) and is a collaboration with the ongoing freshwater monitoring in Fram Strait by the Norwegian Polar Institute. The aim of this project is to investigate the exchange of freshwater between the east Greenland shelf and the open ocean and to determine the impact of these freshwater fluxes on deep water formation regions. The drifters will highlight areas of exchange and will give insight into the mechanisms, for example wind-driven versus eddy-driven exchange. They will also show much mixing with surrounding waters occurs once the freshwater is off the shelf. This will be important to determine the impact on stratification in the convective regions. The first batch of 30 drifters in EGC DrIFT was deployed off Kulusuk, southeast Greenland in between 10 and 16 August 2019 and will cover the region between Kulusuk and Cape Farewell. The batch deployed on this cruise is aimed to cover the region between Fram Strait and Iceland.

The batch of 30 drifters deployed here consists of three types. The CARTHE drifters are small, relative inexpensive, biodegradable drifters (manufactured by Pacific Gyre) which transmit GPS position only. Their top consists of a donut shaped buoyancy body with a GPS unit in the center. They have cross-shaped fins with a depth of about 50 cm as sea-anchors. The SVP-I-XDGS drifters (manufactured by MetOcean) measure Sea Surface Temperature (SST) as well as position. They are based on the NOAA Surface Velocity Program (SVP) drifters, with a ~40 cm buoyant plastic sphere which also contains the GSP, iridium and sensors units and a holey sock sea anchors that extents 15 m below the sea surface. The SVP-BSC drifters (manufactured by NKE) measure SST, Sea Surface Salinity (conductivity), atmospheric pressure and position. They are similarly shaped as the SVP-I-XDGS drifters, but additionally have a short mast on top that contains the barometer.

At each position a CARTHE drifters is deployed together with a SVP drifters, to allow comparison in behaviour which may differ to due the different sea anchors. The drifter deployment positions are documented in Table 10.1. The first six deployments were made on the way west and are located on the east Greenland shelf slope near the main EGC core. West of 5°W ice coverage was too high for deployments, which may result in early loss of the anchor. Four deployments are located around 11°W, where a second southward core has been observed in earlier Fram Strait sections. The remaining five deployments were made on the way back east, near the EGC core and east of the drift ice.

	l		Date	I		1
	Longitude	Latitude	Time	CARTHE	SVP-I-XDGS	
#	West	North	UTC	SN	IMEI	SVP-BSC IMEI
			02-09-19			
1	1° 34.39'	78° 29.76'	21:00	0-2677830	300234067057580	
			03-09-19			
2	2° 30.34'	78° 49.48'	00:30	0-2679725		300234068803170
			03-09-19			
3	3° 30.29'	78° 49.91'	03:55	0-2679547	300234067059930	
			03-09-19			
4	4° 00.61'	78° 49.94'	10:45	0-2679463		300234068603290
			03-09-19			
5	4° 30.04'	78° 49.99'	13:15	0-2679470	300234067055540	
			04-09-19			
6	4° 05.05'	78° 47.73'	12:20	0-2679032		300234068708270
			05-09-19			
7	10° 59.98'	78° 50.00'	22:50	0-2679528	300234067945770	
			06-09-19			
8	11° 30.03'	78° 49.97'	00:13	0-2679713		300234068602310
			09-09-19			
9	10° 59.69'	78° 37.30'	12:00	0-2679716	300234067056900	
			09-09-19			
10	10° 39.54'	78° 36.61'	12:40	0-2679720		300234068604400
			12-09-19			
11	4° 04.02'	78° 49.16'	18:00	0-2679858	300234067052580	
			12-09-19			
12	3° 39.76'	78° 48.02'	20:42	0-2679714		300234068501770
			12-09-19			
13	3° 14.55'	78° 49.53'	21:55	0-2679471	300234067055970	
			13-09-19			
14	2° 44.40'	78° 47.89'	14:58	0-2679723		300234068609530
			13-09-19			
15	2° 26.98'	78° 48.39'	15:32	0-2679865	300234067949780	

Table 10.1. Drifter deployment information.

10. VMADCP and LADCP measurements

During the cruise, both hull-mounted and drop-keel mounted Vessel Mounted Acoustic Doppler Current Profilers (VMADCP) (38 kHz and 150 kHz) were used on the CTD transects across the Fram Strait and the shelf to provide continuous measurements of ocean velocity. The data collected was therefore a mix of these systems since the drop-keel VMADCPs are stopped and pulled up when going through sea ice.

Lowered Acoustic Doppler Current Profiler (LADCP) data were collected at nearly all CTD stations. The set up consisted of a double-head LADCP system (one downward looking (master) and one upward looking (slave) ADCP) with external battery case on the large, 24-bottle CTD rosette in the beginning from CTD 194 to 231. After that, the CTD work had to be continued with the small rosette and hence just a single-head LADCP was used on CTD # 236 to # 253.

The data were processed using the LDEO processing package (Version IX.7 – IX.10) and detided with the barotropic tidal model (TMD2.03/DATA/Model_tpxo6.2). The script files to program and start the LADCP are given in Appendix A.

11. Outreach

This year we had a dedicated team for outreach on board. Freelance journalist Cheryl Katz interviewed scientists and students and wrote three stories based on the work done and its context during FS2019 cruise. She published two stories in National Geographic Online on the freshwater and AMOC and microplastic, and one at yale.edu on ocean acidification:

https://www.nationalgeographic.com/science/2019/12/why-ocean-current-critical-to-world-weather-losing-steam-arctic/

https://www.nationalgeographic.com/science/2019/10/remote-arctic-contains-more-plastic-thanmost-places-on-earth/

https://e360.yale.edu/features/why-rising-acidification-poses-a-special-peril-for-warming-arctic-waters

Photo and film material was taken by former NPI colleague Lawrence Hislop. His photos accompanied the pieces Cheryl wrote and provided plenty of material to be used at NPI webpages, facebook, presentations, and further use in outreach illustrating the practical work done within the Arctic Outflow Observing system.

In addition, a short text and photos were send about twice a week by the science team to our home base at NPI to post on the oceanseaicenpi instagram account: https://www.instagram.com/oceanseaicenpi/?hl=en

Appendix A: LADCP script files (Master, Slave and Single head)

; Append command to the log file \$LC:\KH2018708\LADCP\Mladcp log.txt ; Send ADCP a BREAK \$B ; Wait for command prompt (sent after each command) \$W62 ; Display real time clock setting tt? \$W62 ; Set to factory defaults CR1 \$W62

; use WM15 for firmware 16.3

; activates LADCP mode (BT from WT pings)

WM15

\$W62

; Rename data file prior to new CTD station and use CTD station nr

RN M232_

; Flow control (Record data internally):

; - automatic ensemble cycling (next ens when ready)

; - automatic ping cycling (ping when ready)

; - binary data output

; - disable serial output

; - enable data recorder

CF11101

\$W62

; coordinate transformation:

; - radial beam coordinates (2 bits)

; - use pitch/roll (not used for beam coords?)

; - no 3-beam solutions

; - no bin mapping

EX00100

\$W62

; Sensor source:

; - manual speed of sound (EC)

; - manual depth of transducer (ED = 0 [dm])

; - measured heading (EH)

; - measured pitch (EP)

; - measured roll (ER)

; - manual salinity (ES = 35 [psu])

; - measured temperature (ET)

EZ0011101

\$W62

;

; - configure staggered ping-cycle

; ensembles per burst

TC2

\$W62

; pings per ensemble

WP1

\$W62

; time per burst

TB 00:00:01.20

\$W62

; time per ensemble

TE 00:00:00.80

\$W62

; time between pings

TP 00:00.00

\$W62

;

; - configure no. of bins, length, blank

; number of bins

WN015

\$W62

; bin length [cm]

WS0800

\$W62

; blank after transmit [cm]

WF0000

\$W62

; ambiguity velocity [cm]

WV250

\$W62

; amplitude and correlation thresholds for bottom detection

LZ30,220

\$W62

; Set ADCP to narrow bandwidth and extend range by 10%

LW1

\$W62

;

; SET AS MASTER ADCP

SM1

\$W62

; TRANSMITS SYNCHRONIZING PULSE BEFORE EACH ENSEMBLE

SA011

\$W62

; WAIT .55 s after sending sync pulse

SW05500

\$W62

; SYNCHRONIZING PULSE SENT ON EVERY PING

SI0

\$W62

; keep params as user defaults (across power failures)

СК

\$W62

; echo configuration

T?

\$W62

\$L

; Append command to the log file

\$LC:\KH2018708\LADCP\Sladcp_log.txt

; Send ADCP a BREAK

\$B

% Wait for the command prompt; BBTalk needs this before each command

\$W62

; Display real time clock setting

tt?

\$W62

; Set to factory defaults

CR1

\$W62

; use WM15 for firmware 16.3

; activates LADCP mode (BT from WT pings)

WM15

\$W62

; Rename data file prior to new CTD station and use CTD station nr

RN S232_

\$W62

; Flow control (Record data internally):

; - automatic ensemble cycling (next ens when ready)

; - automatic ping cycling (ping when ready)

; - binary data output

; - disable serial output

; - enable data recorder

CF11101

\$W62

; coordinate transformation:

; - radial beam coordinates (2 bits)

; - use pitch/roll (not used for beam coords?)

; - no 3-beam solutions

; - no bin mapping

EX00100

\$W62

; Sensor source:

; - manual speed of sound (EC)

; - manual depth of transducer (ED = 0 [dm])

; - measured heading (EH)

; - measured pitch (EP)

; - measured roll (ER)

; - manual salinity (ES = 35 [psu])

; - measured temperature (ET)

EZ0011101

\$W62

; - configure staggered ping-cycle

; ensembles per burst

TC2

\$W62

; pings per ensemble

WP1

\$W62

; time per burst

TB 00:00:01.20

\$W62

; time per ensemble

TE 00:00:00.80

\$W62

; time between pings

TP 00:00.00

\$W62

;

; - configure no. of bins, length, blank

; number of bins

WN015

\$W62

; bin length [cm]

WS0800

\$W62

; blank after transmit [cm]

WF0000

\$W62

; ambiguity velocity [cm]

WV250

\$W62

; amplitude and correlation thresholds for bottom detection

LZ30,220

\$W62

; Set ADCP to narrow bandwidth and extend range by 10%

LW1

\$W62

;

; SET AS SLAVE ADCP

SM2

\$W62

; TRANSMITS SYNCHRONIZING PULSE BEFORE EACH ENSEMBLE

SA011

\$W62

; don't sleep

SS0

\$W62

; WAIT UP TO 300 SECONDS FOR SYNCHRONIZING PULSE

ST0300

\$W62

; keep params as user defaults (across power failures)

СК

\$W62 ; echo configuration T? \$W62 W? \$W62 ; start Pinging CS ; Delay 3 seconds \$D3 \$P Please disconnect the ADCP from the computer.

; Close the log file

\$L

; Append command to the log file

\$LC:\KH2019702\LADCP\ladcp_log.txt

\$P

CR1

WM15

; _ !!! PRIOR TO EACH CAST MAKE SURE TO RENAME THE FILE NAME BELOW (L0xx_) TO MATCH THE CTD STATION NR _ !!!:

RN L116_

LZ030,220 CF11101 EA0 EB0 ED0 ES35 EX00111 EZ1111101 WB1 WD111100000 ; blank after transmit [cm] WF0176 ; number of bins WN015 ; pings per ensemble WP1 ; bin length [cm] WS0800

; ambiguity velocity [cm]

WV250

; SET AS MASTER ADCP

SM1

; TRANSMITS SYNCHRONIZING PULSE BEFORE EACH ENSEMBLE

SA001

; SYNCHRONIZING PULSE SENT ON EVERY PING

SI0

; WAIT .55 s after sending sync pulse

SW05500 ; ensembles per burst

TC2

; time per burst

TB00:00:01.20 ; time per ensemble

TE00:00:00.80

; time between pings

TP00:00.00

CK

; start Pinging

; Delay 3 seconds							
\$D3							
\$p ************************************							
\$P Please disconnect the ADCP from the computer.							
\$P ************************************							
; Close the log file							
\$L							
;							
;Instrument = Workhorse Sentinel							
;Frequency $= 307200$							
;Water Profile = YES							
;Bottom Track = NO							
;High Res. Modes = NO							
;High Rate Pinging = NO							
;Shallow Bottom Mode= NO							
;Wave Gauge = NO							

;Lowered ADCP = YES
;Ice Track = NO
;Surface Track = NO
;Beam angle = 20
;Temperature = 5.00
;Deployment hours $= 12.00$
;Battery packs = 1
;Automatic TP = YES
;Memory size $[MB] = 256$
;Saved Screen = 1
,
;Consequences generated by PlanADCP version 2.06:
;First cell range = 10.11 m
;Last cell range $= 114.11 \text{ m}$
;Max range = 116.10 m
;Standard deviation = 1.73 cm/s
;Ensemble size $= 521$ bytes
;Storage required = $21.46 \text{ MB} (22507200 \text{ bytes})$

;Power usage = 43.18 Wh

;Battery usage < 0.1

;

; WARNINGS AND CAUTIONS:

; WM15 feature has to be installed has to be installed in Workhorse to use selected option.

; Advanced settings have been changed.

Appendix B: Moorings recovered and deployed

Rigg F	11-20		78 49,161N Dyp:	Fra bunn:	Ut:
Satt ut	9 SEP 2018 kl 0	9:34 003 03,248W			
Tatt opp	AUG 201				
	IPS	SNR. 51062	51	2372	09:31
_	SBE37	SNR. 3490	53	2370	09:31
	5 m Kevlar				
	ADCP300	SNR: 18070	57	2366	09:31
	2 Glasskuler 1 m Kjetting galvan 10 m Kevlar 5 m Kevlar	isert			
	Stålkule 37 McLa	ne	76	2347	
	0,5 m Kjetting galv 100 m Kevlar	anisert			
1	20 + 10 m Kevlar				
Ŧ	50 m Kevlar				
_	5 m Kevlar SBE37	SNR 4702	252	2171	09.13
	4 Glasskuler (gule 2 m Kjetting galvan) isert			07110
	RCM9	SNR.1324	284	2139	09:13
ů	0,5 m Kjetting galv				
•	200(204) m Kevlar 500(496) m Kevlar 500(498) m Kevlar 50 m Kevlar				
	SBE37	SNR. 3552	1504	919	07:46
	4 Glasskuler 2 m Kjetting galvan	isert			
ĬĦ <mark>Ŀ</mark>	RCM11	SNR.491	1507	916	07:46
Å	0,5 m Kjetting galv 500(498) m Kevlar	K			
•	200 (198)m Kevlar 200 (205)m Kevlar				
	SBE37 4 Glasskuler (gule) 2 m Kjetting galvani	SNR. 8821	2408	15	07:23
H B	Seaguard	SNR.10071	2412	11	07:23
Å	0,5 m Kjetting rustfr	i			
ď	Svivel				
8	AR861	SNR. 287			
Ţ	5 m Kevlar				
ğ	2 m Kjetting galvani	isert			
	1000 //000		2.122	0	

ANKER 1220/(980) kg

2423

Rigg F1 Settes ut	2-20 8 SEP 2018 kl	78 49,270N 09:25 004 01.327W	Dyp:	Fra bunn:	Ut:
Tatt opp	AUG 20				
	IPS	SNR. 51167	50	1778	09:22
	SBE37 5 m Kevlar	SNR.3489	52	1776	09:22
	ADCP300	SNR: 24385	56	1772	09:22
8	0,5m Kjetting ga	lvanisert			
I	10 m Kevlar				
	Stålkule 37		68	1760	
B	0,5 m Kjetting ga	alvanisert			
¢	SBE37	SNR. 7074	120	1708	09:08
•	200 m Kevlar				
	SBE37	SNR.4837	269	1559	09:03
	4 Glasskuler 2 m Kjetting galv	anisert			
H B	RCM9	SNR. 884	273	1558	09:03
ê ●	0,5 m Kjetting ga 497 m Kevlar	lv			
•	500 m Kevlar 199 m Kevlar				
Ĺ	SBE37	SNR.3554	1469	359	08:33
	3 Glasskuler 2 m Kjetting galv	anisert			
	RCM11	SNR.235	1473	355	08:33
ដ្ឋ	0,5 m Kjetting ga	lv			
Ĭ	199 m Kevlar 100 m Kevlar 40 m Kevlar				
	SBE37 4 Glasskuler 2 m Kjetting galva	SNR. 8822 anisert	1813	15	08:17
HB	RCM11	SNR.228	1817	11	08:17
Å	0,5 m Kjetting rus Svivel	tfri			
ļ	AR861	SNR. 182			
8	3,5 m Kevlar				
8	3 m Kjetting galva	anisert			

ANKER 1120/(940) kg

ğ

Rigg F1 Settes ut	3-20 7 SEP 2018 , kl 10	78 50.392N 0:44 004 59.485W	Dyp:	Fra bunn:	Ned i vann				
Tatt opp	AUG 201								
	IPS5	SNR. 51064	50	972	09:40				
P	SBE37	SNR: 7056	52	970	09:40				
	5 m Kevlar ADCP300	SNR: 16876	56	966	09:40				
8	1,5 m Kjetting galv								
Å	5 m Kevlar								
	10 m Kevlar Stålkule 37		73	949					
X	1,5 m Kjetting galv.								
I	5 m Kevlar								
	Hvallydopptaker		81	941	09:25				
	2 m Kevlar 0,5 m Kjetting galv. 50 + 20 m Kevlar								
F	SBE37	SNR. 12234	104	918	09:18				
	SBE37	SNR. 12232	157	865	09:12				
	100 (103) m Kevlar SBE37	SNR.3993	258	764	08:45				
	3 Glasskuler 2 m Kjetting galv.								
itter å	RCM9 0,5 m Kjetting galv	SNR.1327	262	760	08:45				
Ţ	500 (498)m Kevlar	500 (498)m Kevlar K							
	200 (198)m Kevlar								
	50 m Kevlar SBE37	SNR.3551	1008	14	16:36				
	4 Glasskuler 2 m Kjetting galv.								
₿	RCM11	SNR. 561	1012	10	16:36				
Â	0,5 m Kjetting rustfi	ri							
4	Svivel								
,	AR861	SNR. 053							
Ĭ	3,5 m Kevlar								
8	3 m Kjetting galvani	sert							

ANKER 1110/(880) kg

Rigg F13B-5 Satt ut 5 SEP 2018, kl 12:53 Tatt opp Aug 201	78 50.20 005 30.3	51 N 848W	Dyp:	Fra bunn:	Ut:			
	ICECat 25 m Wire Weak link	SNR. 13506	17	510	12:47			
	1 m Kjetting gal 2 Glasskuler	v.						
	ADCP	n SNR.727	42	485	12:47			
	3 m Kjetting gal 4 Glasskuler	v.						
	51 m Kevlar							
	SBE37	SNR. 12233	96	431	12:42			
	1 m Kjetting gal 2 Glasskuler	V.						
	RCM7	SNR. 7718	99	428	12:42			
8	206 m Kevlar							
	SBE37	SNR. 10295	150	377	12:30			
	(Merke på ca 50 m ned)							
•	206 m Kevlar							
	(Merke på ca 101 m over kuler) - 105							
	2 m Kjetting galv							
	4 GLASSKULER		515	12				
× ×	AR661	SNR. 291						
•	5 m Kevlar.							
8	2 m Kjetting gal	V.						
	NKER	800/(620)kg	527	0				

Rigg F14-20 Satt ut 6 SEP 2018, kl 08:35 Tatt opp Aug 201	78 48,870N 006 30,055W	Dyp:	Fra bunn:	Ned i vann:

ANKER 920/(740) kg

IPS	SNR. 51138		50	217	08:31
4 Glasskuler 2 m Kjetting galv.					
SBE37	SNR: 14097		54	213	08:31
5 m Kevlar					
ADCP 300	SNR: 20021		58	209	08:30
1 m Kjetting Galv. 0,5 m Kjetting Galv. 40 m Kevlar					
SBE37	SNR: 14098		99	168	08:21
100 (103) m Kevlar					
SBE56	SNR.3943	(25 m over 56)	203	64	08:16
SBE56	SNR.3942	(25 m over 37)	228	39	08:12
50 (51) m Kevlar					
SBE37 4 Glasskuler 2 m Kjetting Galv.	SNR.3992		253	14	08:03
RCM9	SNR. 1046		257	10	08:01
Svivel					
AR861	SNR. 506				
3.5 m Kevlar					
2,5 m Kjetting					

267

Rigg F17-15 Satt ut 5 SEP 2018, kl 14:03 Tatt opp Aug 201	78 00	50. 175 N 8 04.879W	Dyp):	Fra bunn:	Ut:
••••	SBE37	SNR. 15910		32	196	14:02
	20 m Kevla Weak link	ar o/u				
	3 m Kjettir 4 Glasskule	ng galv. er				
Ē	SBE16	SNR.6693		56	172	14:02
8	0,5 m Kjett	ting galv.				
	40 m Kevla	ar				
•	SBE37	SNR.2962		96	132	13:52
	10 m Kevla	ar				
	ADCP	SNR.7636		107	121	13:48
P	1,5 m Kjett	ting galv.				
	SBE16	SNR 6694		109	119	13:48
8	0,5 m Kjett	ting galv.				
Ť	ý J					
	102 m Kev	lar				
•	SBE56	SNR. 3944	(20 m over 37)	196	32	13:38
	5 m Kevlar	CNID 70/2		216	10	12.24
	SBE37	SINK. /062		216	12	13:34
	2 m Kjetting	galv.				
	4 GLASSKULER			217	11	
	AR661	SNR. 110				
	5 m Kevlar					
8	2 m Kjettir	ıg galv.				
	ANKER	815/(700)kg		228	0	

Rigg Satt ut	F10-15 13 Sep 2019 , kl	78 49,623N 19:34 001 57,036W	Dyp:	Fra bunn:	Ned i vann:
	ADCP/IPS-ram 30	00 SNR: 18070	50	2591	19:30
	RCM9	SNR. 1175	52	2589	19:30
	SBE37	SNR.7059	54	2585	19:30
•	100 (102) m Kev	/lar			
•	20 m Kevlar				
	Stålkule Med svivel. 1 m Kjetting Gal	lv.			
Ŭ -	RCM 7	SNR. 9464	180	2414	18:24
↓ ●	0,5 m Kjetting S 0,5 m Kjetting G SBE37	yrefast alv. SNR. 14099	222	2417	18:24
↓	4 x 500 (538,40	,20,198,197,506,506) m Kevlar			
•	200(204) m Kev 100 (101 m Kev 100 (101) m Kev	lar lar /lar			
	5 m Kevlar (tot	alt 2412)			
	SBE37	SNR. 8226	2634	16	17:48
	6 Glasskuler 3 m Kjetting Gal	lv.			
	Nortek	SNR. 42836-1-930	2639	11	17:48
8 I	Svivel				
Z	AR861	SNR. 506			
Ĭ	5 m Kevlar				
8	3 m Kjetting				
	ANKER 1200	/(1000) kg	2650 (2663)	0	

Rigg I Satt ut 1	5 11-21 3 Sep 2019 kl 1	3:48 003 03,072W	78 49,121N Dyp:	Fra bunn:	Ut:
	IPS	SNR. 51062	44	2409	13:42
	SBE37 5 m Kevlar	SNR. 3492	46	2407	13:42
	ADCP300	SNR: 17462	50	2403	13:42
	0,5 m Kjetting ga 10 m Kevlar	lvanisert			
	Stålkule (gul)		72	2381	
8	Svivel 1 m Kjetting galv	anisert			
↓ ↓	100 m Kevlar				
	50 m Kevlar 50 m Kevlar				
	SBE37	SNR. 3996	273	2180	13:27
	4 Glasskuler (2 g 2 m Kjetting galv	gule og 2 oransje) ranisert			
	RCM9	SNR.1049	276	2177	13:27
8	0,5 m Kjetting ga	lv			
•	200(199) m Kevl 500(510) m Kevl 500(510) m Kevl 20 m Kevlar	ar ar ar			
	SBE37 3 Glasskuler (gu 2 m Kjetting galv	SNR. 7061 le) anisert	1526	927	13:08
H B	RCM11	SNR.538	1529	924	13:08
	0,5 m Kjetting ga 500(511) m Kevl 200 m Kevlar 200 m Kevlar	lv ar			
	SBE37 4 Glasskuler (gul 2 m Kjetting galva	SNR. 8821 e) anisert	2439	14	12:52
Ň e	Seaguard	SNR.834	2442	11	12:52
Å	0,5 m Kjetting rus Svivel	tfri			
1	AR861	SNR. 499			
8					

| | | 0 0 (

5 m Kevlar

3 m Kjetting galvanisert

ANKER 1230/(980) kg

Rigg F12-21 Satt ut 12/9-19 kl 17:25	78 49,274N 004 01,332W	Dyp:	Fra bunn:	Ut:
Tatt opp				
IPS	SNR. 51167	60	1770	17:22
SBE37 5 m Kevlar	SNR.7055	62	1768	17:22
ADCP300	SNR: 20021	66	1764	17:22
2 Glasskuler 1,0 m Kjetting galvar 0,5 m Kjetting galv 10 m Kevlar	nisert			
Stålkule 37 1,0 m Kjetting galva 0,5 m Kjetting galv	SNR. inisert	78	1752	
200(199) m Kevlar				
SBE37	SNR.3994	278	1552	17:10
3 Glasskuler 2 m Kjetting galvani	sert			
RCM9	SNR. 836	282	1548	17:10
0,5 m Kjetting galv 500(498) m Kevlar				
500(497) m Kevlar 200(205) m Kevlar				
SBE37	SNR.13505	1482	348	16:53
3 Glasskuler 2 m Kjetting galvanis	sert			
RCM11	SNR.556	1486	344	16:53
0,5 m Kjetting galv				
200(207) m Kevlar 100(101) m Kevlar 20 m Kevlar				
SBE37 G G 4 Glasskuler C C C 2 m Kjetting galvanis	SNR. 10294 ert	1816	14	16:42
RCM11	SNR.117	1819	11	16:42
0,5 m Kjetting rustfri Svivel				
AR861	SNR. 500			
5 m Kevlar				

2 m Kjetting galvanisert

8

ANKER 1190/(960) kg

Rigg I Satt ut	7 13-21 11/9-19 kl 15:34	78 50.346N 4 004 59.959W	Dyp:	Fra bunn:	Ned i vann:
	IPS5	SNR. 51140	50	962	15:32
Å	5 m Kevlar				
2	ADCP300	SNR: 18151	56	956	15:32
	1,5 m Kjetting galv	V			
Ŕ	SEACAT SBE16	SNR. 7253	59	953	15:32
Ť	0,5 m Kjetting galv	V.			
	10 m Kevlar Stålkule 37		69	943	
ſ	2 m Kevlar				
	Hvallydopptaker		72	940	15:25
L ↓	2 m Kevlar				
8	0,5 m Kjetting galv	ν.			
Ť	20 m Kevlar Merke for instrum	ent	95		
Þ	50 m Kevlar SBE37	SNR. 3995	147	865	15:18
	100 m Kevlar SBE37	SNR.7060	245	767	15:16
	3 Glasskuler 2 m Kjetting galv.				
₩ ₽	RCM9 0,5 m Kjetting galv	SNR.1326	248	764	15:16
I	500(497) m Kevla	ır			
	100 m Kevlar 100 m Kevlar 50 m Kevlar SBE37	SNR. 13504	996	16	15:02
	4 Glasskuler 2 m Kjetting galv.				
Ň	SEAGUARD	SNR. 345	1000	12	15:02
Å	0,5 m Kjetting rust	tfri			
۶Į	Svivel				
	AR861	SNR. 743			
Ă	5 m Kevlar				
8	3 m Kjetting galva	nisert			
11					

Ī

Rigg Satt ut	F13B-6 11/9-19 , kl	78 09:40 00.	50.213 N 5 30.149W	Dyp:	Fra bunn:	Ut:
		ICECat 25 m Wire Weak link 1 m Kjettin 2 Glasskuld ICECAT m 4 m Kjettin 4 Glasskuld	SNR. 21029 ng galv. er nodem ng galv. er	34	490	09:40
		SEAGUAF 0,5 m Kjett	RD SNR. 883 ting galv.	65	459	09:35
	ë ∎ 	SBE37 41 m Kevla	SNR. 9853 ar	67	457	09:30
		SBE37 1 m Kjettir 2 Glasskule 0,5 m Kjett 200(199) r Kevlar	SNR. 9852 ng galv. er ting galv. n	106	418	09:27
		Merket 50 r	n ned	204		
		205 m Kev Merket 100	lar m over kuler	413		
		2 m Kjetting	galv.			
		4 GLASSKU	JLER	513	11	09:20
	X	AR661	SNR. 410			
		5 m Kevlar				
	g	3 m Kjettin	ng galv.			
	0	ANKER	820/(640)kg	524(534)	0	

Rigg	F14-21	
Satt ut	10/9-19, kl	14: 33

78 48,884N 006 30,001W

IPS	SNR. 511	38 4	16	224 1	4:30
4 Glass 2 m Kje	skuler etting galv.				
SBE37 5 m Ke	SNR: 705	8 5	52	218 1	4:28
ADCP 1 m Kjo 0,5 m F	300 SNR: 174 etting Galv. Kjetting Galv.	61 5	56	214 1	4:25
100 m l SBE37	Kevlar SNR. 705	4 1	.00	170 1	4:18
50 m K SBE56 40 m K	evlar SNR: 394 evlar	3 2	207	63 1	4:14
SBE37 4 Glass 2 m Kje	SNR.7057 skuler etting Galv.	7 2	257	13 1	4:07
RCM9	SNR. 132	5 2	260	10 1	4:07
Svivel					
AR861	SNR. 568	3			
3,5 m k	Kevlar				
2,5 m k	Kjetting				
ANKER	900/(740) kg	270) (269)	0	

Rigg F17-16 Satt ut 10/9-19, kl 07:05	78 50. 008 04	180 N 798W	Dyp:	Fra bunn:	Ut:
	ICECAT	SNR.21024	25	201	07:05
	3 m Kjetting galv 4 Glasskuler	7.	52	174	07:05
	Datalogger				
B	SBE16	SNR.7212	54	172	07:05
e L	0,5 m Kjetting 51 m Kevlar				
•	SBE37 Merket	SNR.13252	94	132	06:53
	ADCP	SNR.24518	105	121	06:50
F	2 m Kjetting ga	lv.			
B	SBE16	SNR.7339	108	118	06:50
_8	0,5 m Kjetting				
	99 m Kevlar				
•	SBE56 5 m Kevlar	SNR.3942	180	36	06:44
	SBE37	SNR.14098	214	12	06:42
	2 m Kjetting galv	Ι.			
	4 GLASSKULER		215	11	
	AR861CS	SNR. 501			
	5 m Kevlar.				
Ŕ	2 m Kjetting ga	lv.			
	ANKER	800/(700)kg	226	0	