
1. Introduction
Recent observations show that the Antarctic Ice Sheet (AIS) (Forsberg et  al.,  2017; IMBIE,  2018; Rignot 
et al., 2019) and ice shelves (Adusumilli et al., 2020; Paolo et al., 2015; Scheuchl et al., 2016) are currently 
losing mass, which models suggest is likely to accelerate in the coming years under high emission forcing 
(Deconto et al., 2021; Edwards et al., 2021; Seroussi et al., 2020). The resulting meltwater discharge into the 
ocean influences regional and global climate (Bronselaer et al., 2018; Dong et al., 2022; Fyke et al., 2018; Purich 
& England, 2023; Rye et al., 2020), and has the potential to feedback onto the rate of basal ice shelf melting 
(Bronselaer et al., 2018; Flexas et al., 2022; Golledge et al., 2019), although this feedback is uncertain (Beadling 
et al., 2022; Moorman et al., 2020). However, the time-evolving interactions between the AIS, ice shelves, and the 
ocean are not included in Coupled Model Intercomparison Project phases 5 and 6 models (CMIP5 and CMIP6; 
Taylor et al., 2012; Eyring et al., 2016; Siahaan et al., 2022). These models employ specified ice sheets, where 
excess water from the ice/snow layer over Antarctica is rerouted to the ocean as runoff when snow depth exceeds 
a certain threshold. In cases where ice shelf cavities are present, the melt rates do not evolve in time (Mathiot 
et al., 2017). The absence of ice sheet processes and ocean–ice interactions in coupled climate models excludes 
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Plain Language Summary The melting of the Antarctic ice sheet and ice shelves can have 
significant impacts on ocean circulation and thermal structure, but current climate models do not fully capture 
these effects. In this study, we analyze seven climate models to understand how they respond to the addition of 
meltwater from Antarctica. We find that the presence of Antarctic meltwater leads to a significant weakening 
of deep convection in the open ocean. The meltwater also causes Antarctic Bottom Water to warm and its 
volume to decrease, while the sea surface cools and sea ice expands. However, the magnitude of the response 
to meltwater varies across models, suggesting that the mean-state conditions of the Southern Ocean play a role. 
A better representation of the mean state and the inclusion of Antarctic meltwater in climate models will help 
reduce uncertainties and improve our understanding of the impact of Antarctic meltwater on climate.
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potential feedbacks from meltwater discharge on regional and global climate, representing an unaccounted-for 
uncertainty in historical simulations and future projections (Swart et al., 2023).

The formation and recirculation of Antarctic Bottom Water (AABW) plays a crucial role in regulating the global 
climate by redistributing heat and carbon between the surface and deep ocean. In the real ocean, AABW is primar-
ily formed by the sinking of dense waters on the Antarctic continental shelves (Orsi et al., 1999) with occasional 
contributions from open-ocean deep convection (Cheon & Gordon, 2019; Killworth, 1983). However, in most 
CMIP5 and CMIP6 models, AABW is formed by open-ocean deep convection (deep convection hereafter) with a 
large inter-model spread in the location and area of deep convection (Heuzé, 2021; Heuzé et al., 2013; Mohrmann 
et al., 2021). Simulated bottom water properties and transport are influenced by deep convection (Heuzé, 2021), 
which could be impacted by climate change. CMIP5 results suggest that Southern Ocean (SO) surface fresh-
ening caused by an enhanced hydrological cycle in a warming climate leads to a reduction in deep convection 
(De Lavergne et al., 2014). Additional surface freshening enhances the stratification by making surface waters 
less dense and thus the water column less prone to deep convection. Idealized model experiments also show that 
Antarctic meltwater forcing reduces convective depth (Fogwill et al., 2015) and suppresses the production of 
AABW (Lago & England, 2019; Li et al., 2023; Tesdal et al., 2023).

It remains unclear how the different representation of deep convection across models would affect the response of 
the SO climate to Antarctic meltwater. Inconsistent Antarctic meltwater forcing, and differing model configura-
tions used in previous studies makes it challenging to quantify the uncertainty associated with the climate effects 
of Antarctic meltwater (Swart et al., 2023). For example, some studies suggest that simulated Antarctic sea-ice 
trends are highly sensitive to small amounts of Antarctic meltwater (10–250 Gt yr −1) (Bintanja et al., 2013, 2015), 
while others show less sensitivity to significantly larger amounts of Antarctic meltwater (950–4,000 Gt yr −1) 
(Pauling et al., 2016, 2017; Swart & Fyfe, 2013). A consistent experimental design applied across a wide range of 
climate models can help us discern robust, and model-dependent uncertainties to the meltwater forcing.

In this study, we present the first results from the new Southern Ocean Freshwater Input from Antarctica (SOFIA; 
Swart et al., 2023). We investigate the impacts of Antarctic meltwater on deep convection and relevant climate 
variables in seven different climate models following a consistent experiment protocol. We also evaluate the influ-
ence of the mean-state representation of deep convection on the modeled responses. By assessing the consistency 
and differences of the modeled response, this study highlights the need to understand and incorporate the effects 
of meltwater in future climate projections and the importance of refining and improving the representation of the 
Southern Ocean in climate models.

2. Methods
2.1. Models and Experimental Design

This study makes use of recent output from a novel multi-model ensemble of a coordinated Antarctic meltwater 
experiment, designed by the Southern Ocean Freshwater Input from Antarctica (SOFIA; Swart et  al.,  2023). 
We investigate the SOFIA Tier-1 antwater experiment, which imposes a temporally uniform additional fresh-
water flux of 0.1 Sv (1 Sv = 3.154 × 10 4 Gt yr −1) at the ocean surface in the grid cells adjacent to the Antarctic 
coast, while all other forcing is taken from the CMIP6 pre-industrial control experiment (piControl; Eyring 
et al., 2016). While the observed freshwater volume associated with Antarctic ice sheet and shelves melt over 
2010s is 0.017 ± 0.006 Sv (509 ± 186 Gt yr −1) (Slater et al., 2021), primarily through basal melting and iceberg 
calving, the experiment utilizes a relatively strong but plausible freshwater forcing that may be achieved by 
mid-21st century under a high emission scenario (Golledge et al., 2019). Such a coordinated experimental design 
allows us to quantify the model similarities and differences in the climate response to Antarctic ice sheet melt 
among different models. Additional details about the configurations and experimental protocol can be found in 
Swart et al. (2023).

The simulations were run for at least 100  years, and data from seven models are currently available: 
ACCESS-ESM1-5 (Ziehn et  al.,  2020), GFDL-ESM4 (Dunne et  al.,  2020), GFDL-CM4 (Held et  al.,  2019), 
HadGEM3-GC31-LL (Kuhlbrodt et al., 2018), CanESM5 (Swart et al., 2019), GISS-E2-1-G (Kelley et al., 2020), 
and NorESM2-MM (Seland et al., 2020). These models all participated in CMIP6 and use the same configuration 
as in CMIP6 for the SOFIA experiment. The piControl run is taken from the CMIP6 output on the Earth System 
Grid Federation (ESGF) archive, except for GISS-E2-1-G, where the piControl outputs were provided directly 
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along with SOFIA simulations. We only use the first ensemble member for each model and analyze the first 
500 years for piControl and the concurrent first 100 years of antwater to examine the response to meltwater input.

2.2. Model Output Analysis

The monthly-mean mixed layer depth (MLD) we use is the CMIP6 output variable mlotst (Griffies et al., 2016) 
defined with a density threshold of 0.125 kg m −3. Despite the modeled MLD computed in this way often being 
deeper than observed (Heuzé, 2015, 2021), its relative change presumably provides a reasonable measure for our 
purpose of process investigation. The deep convection area is defined as the total surface area south of 55°S with 
MLD exceeding 2,000 m (De Lavergne et al., 2014). To measure the SO deep convection strength, we compute 
the deep-mixed volume (DMV) south of 55°S by multiplying the grid cell area by its MLD, and summing for 
cells with MLD exceeding 2,000 m (Brodeau & Koenigk, 2016; Heuzé, 2021). The ventilated volume of each 
depth range is calculated in the same way, but with 100-m MLD increments, for example, the volume at 100 m is 
the volume with MLD between 100 and 200 m. While we compare the antwater outputs with parallel 100-year 
piControl data, we use 500-year piControl data to assess the variability beyond the selected 100 years. To main-
tain equal sampling, we divide the 500-year piControl time series into five non-overlapping 100-year chunks 
(periods), each representing an ensemble realization. Then, we calculate the statistic of interest for each chunk 
and average the results over five chunks for the entire 500-year period. These statistical methods are justified 
based on the large-variability and different climatological states possible in the SO across the suite of models 
given SO deep-convection.

2.3. Observation-Based Reference Data

Observed temperature and salinity data from the World Ocean Atlas (WOA18; Boyer et al., 2018) are used to 
estimate the climatological mean state of water mass properties in the SO. The piControl simulations repre-
sent a quasi-equilibrium climate state under pre-industrial forcing, while the WOA18 (1955–2017) climatology 
provides the historical state accounting for a warming ocean, therefore the two data sets are not directly compa-
rable. However, WOA18 can be used as a reference to contextualize our simulation and analysis results, and to 
better understand the potential impact of Antarctic meltwater on the SO.

To assess the simulation of deep convection in the SO, we utilize the monthly-mean MLD obtained from 
the European Centre for Medium-Range Weather Forecasts (ECMWF) OCEAN5 ocean analysis-reanalysis 
(ORAS5: Ocean Reanalysis System 5) spanning from 1958 to 2022, with a horizontal resolution of approximately 
0.25° × 0.25° (Copernicus Climate Change Service). This MLD metric is defined as the depth where the average 
sea water density exceeds the surface density plus 0.03 kg m −3. The use of lower density criteria in reanalysis 
may result in shallower MLD compared to the criteria of 0.125 kg m −3 used in CMIP6 (Heuzé, 2015). While the 
ORAS5 data set provides an estimate of the historical evolution of the ocean representing a different period to the 
piControl simulations, it remains a useful reference for our analysis.

3. Results
3.1. Meltwater-Induced Reduction in Deep Convection

To examine the spatial variability of deep convection in the SO given its reported differences in location and 
strength across models (Heuzé, 2021; Heuzé et al., 2013), we first analyzed the maximum MLD in each model's 
piControl simulation. Deep convection, indicated by black contours of 2,000 m MLD (Figure 1), primarily occurs 
in the Weddell Sea and Ross Sea, varying in areal extents across models (from 0.38 × 10 5 km 2 in CanESM5 to 
28.93 × 10 5 km 2 in ACCESS-ESM1-5; Table S1 in Supporting Information S1). Our focus is on how the models 
respond to the meltwater perturbation, which allows us to concentrate on the physics related to external freshwa-
ter forcing. This approach also permits us to assess the role of the model's mean state, but the underlying causes 
of climatological differences are beyond the scope of this paper.

In response to meltwater forcing, the maximum MLD decreases in all models. The reduction can be up to 4,000 m 
(blue shading in Figure 1). These changes suggest a near-complete cessation of deep convection in those regions 
except ACCESS-ESM1-5. In most deep convection regions in ACCESS-ESM1-5, the maximum MLD still 
reaches the bottom in antwater. Notably, models ACCESS-ESM1-5 and HadGEM3-GC31-LL show a positive 
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Figure 1. Response of Southern Ocean deep convection to meltwater. (a–g) Maximum mixed layer depth (MLD) change (shading; antwater - picontrol) south of 55°S 
across various models, each labeled in the center of its respective subplots. The black contour is 2,000 m of maximum MLD in piControl, delineating the location of 
deep convection. (h) Climatological annual deep mixed volume (DMV) south of 55°S for piControl (purple) and antwater (blue), with values at the top of each bar 
corresponding to models: ACCESS-ESM1-5 (AE), NorESM2-MM (NM), GFDL-ESM4 (GE), GFDL-CM4 (GC), HadGEM3-GC31-LL (HG), GISS-E2-1-G (GI), and 
CanESM5 (CE).
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anomaly patch at the edge of the piControl deep convection region, possibly indicating a location shift of the 
deep convection. These findings indicate that meltwater forcing has a significant impact on the MLD and deep 
convection in the SO, but the response varies across models.

The maximum ventilated volume at each depth range provides a more detailed picture of how convective mixing 
responds to the meltwater forcing (Figure 2). All models exhibit a consistent vertical distribution in piControl, 
with relatively large volumes below 2,000 m and above 1,000 m, although the magnitudes differ among models. 
In antwater, all models, except ACCESS-ESM1-5, experience an extreme reduction in ventilated volume to 
nearly zero below 2,000 m, while the shallow (<500 m) mixed volume decreases by less than ∼30% or even 
increases at certain depths (Figure S1 in Supporting Information S1). This implies that the impact of the meltwa-
ter on the convective mixing varies with depth and is greater on deep ocean convection than on shallow mixing. 
Both ACCESS-ESM1-5 and NorESM2-MM have a significantly larger ventilated volume below 2,000  m in 
piControl compared to the other models and the re-analysis and display a larger change in response to meltwater. 
Averaged annual deep mixed volumes (DMV; Figure 1h) also exhibit substantial reduction to nearly zero in all 
models except ACCESS-ESM1-5, which still maintains strong deep convection. The magnitude of deep convec-
tion response has a high correlation with its mean-state value (r 2 = 0.79, p < 0.01). The additional freshwater 
further reduces the already low frequency of deep convection (Figure S2 in Supporting Information S1), with 
some models showing no occurrence for 100 consecutive years (Table S1 in Supporting Information S1). To 
account for potential sampling biases introduced by the meltwater simulations only performed for 100 years, 
and the long timescale variability of the SO, we conduct a bootstrapping test by randomly resampling 1,000 
times from the piControl data (please refer to SI for details). The gray shading in Figure 2 represents the range 
of one standard deviation of the maximum ventilated volume obtained from the resampled data. The statistically 

Figure 2. Vertical profiles of Southern Ocean convection: (a–g) Maximum ventilated volume in piControl (average, black; 
gray shading refers to one standard deviation) and in antwater (average, blue; purple dot where significant determined 
through a bootstrapping test, please refer to SI for details) across various models, each labeled within its respective subplots. 
For each column, the upper and lower panels represent the above 1,000 and 1,000–5,500 m depth ranges, respectively. Note 
that the horizontal and vertical scales changes between the upper (0–9 × 10 6 km 3) and lower parts (0–1.75 × 10 6 km 3) of each 
panel. (h) Maximum ventilated volume from ORAS5 re-analysis data over 1958–2022.
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significant reduction in deep convection (Figure S3 in Supporting Information S1; purple dots in Figure 2) indi-
cates that the result is not an artifact of the sampling uncertainty.

3.2. Reduced Antarctic Bottom Water Volume

Open-ocean deep convection is the main production mechanism of AABW in most CMIP6 models and reduced 
deep convection could have a large influence on simulated local and global climate by reducing the AABW 
formation rate (De Lavergne et al., 2014; Lago & England, 2019; Purich & England, 2023). However, it is not 
yet clear how the response of AABW formation and volume to Antarctic meltwater differs or is similar among 
different climate models.

AABW is typically defined by a neutral density greater than 28.27 kg m −3 (Orsi et al., 1999). We analyze the 
AABW properties south of 60°S, consistent with the established AABW cell definition (Lago & England, 2019), 
emphasizing the AABW signal. The AABW volume derived from WOA18 is about 23.69 × 10 6 km 3, roughly 
32% of the total water volume in this region. The models display a wide variation in the distribution pattern of 
water masses density south of 60°S (Figure 3). This variability across models results in a wide range of AABW 
volume, spanning from 0.02 × 10 6 km 3 (GISS-E2-1-G) to 43.52 × 10 6 km 3 (CanESM5) across models (black 
curves and numbers in Figure 3) based on the observed-climatology criteria of 28.27 kg m −3. The AABW volume 
change in response to meltwater has a high correlation with the AABW volume in the models' climatological 
mean state (r 2 = 0.93, p < 0.01; Figure S4c in Supporting Information S1). The AABW volume change (σ = 3.50) 
across models shows less variability than the climatological mean AABW volume (σ = 17.74) in piControl.

Despite large biases in the water mass properties, all models show a consistent contraction in the densest waters 
south of 60°S (purple curves in Figure 3), corresponding to a warming of the deep ocean (Figure 4). To better 
assess the volume changes of bottom water due to meltwater influence, a critical neutral density is determined at 
the position of maximum volume for each model. The integrated volume near this neutral density decreases  across 

Figure 3. Volumetric distribution of water masses plotted by density south of 60°S from piControl (black), antwater 
(light blue), and the difference (purple). The observed distribution (light gray) from WOA18 is averaged from 1955 to 
2017. The black number in the top-right corner of each panel is the simulated volume (×10 6 km 3) with density greater than 
28.27 kg m −3, indicated by a vertical gray line. The gray number in panel (a) represents the observed volume from WOA18. 
(h) Integrated volumes within a 0.18 kg m −3 range near the volume peak of each model are depicted as dots in piControl, 
arrows in antwater, and a black square for WOA18.
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all models (Figure 3h), with this neutral density being represented by the purple contours in Figure 4. The volume 
of the lighter water masses (e.g., around 28 kg m −3) increases due to the upper ocean freshening. The consist-
ent pattern of surface cooling and deep ocean warming at high latitudes might result from common processes 
and responses to the meltwater forcing shared among models, such as decreased deep convection discussed 
earlier. However, no significant linear relationship is found between the magnitudes of AABW contraction and 
the change or base state of deep convection (Figure S5 in Supporting Information S1). This suggests that other 
processes may also affect AABW. All models also show a reduced AABW overturning circulation and increased 
sea ice extent (Figure S5 in Supporting Information S1), possibly contributing to surface cooling and deep ocean 
warming. However, without further analysis of the associated processes, we cannot attribute the changes to any 
specific process.

Figure 4. Zonal mean potential temperature change (°C; shading; antwater - picontrol). Solid gray contours show the 
climatological temperature in piControl. Black lines represent the 28.27 kg m −3 neutral density in piControl (solid line) and 
antwater (dashed line). Purple lines denote neutral density corresponding to the volume peak (see black line in Figure 3) 
observed in piControl.
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4. Discussion and Conclusions
This study analyzed the novel multi-model experiment antwater, which is specified as a part of the coordinated 
experimental designs proposed by SOFIA (Swart et al., 2023). Our analysis of seven climate models consist-
ently shows a significant decrease in deep convection (Figures 1 and 2), contraction of Antarctic Bottom Water 
(AABW) (Figure 3) and warming of the deep ocean (Figure 4) in response to meltwater forcing. In piControl, 
all seven models exhibit deep convection in the Southern Ocean (SO), primarily in the Weddell and Ross Sea. 
Adding meltwater at the surface increases water column stratification at high latitudes, where density is domi-
nated by salinity (De Lavergne et al., 2014; Purich & England, 2023), leading to reduction in deep convection. 
This finding is consistent with previous single-model studies (Fogwill et al., 2015; Lago & England, 2019; Li 
et al., 2023).

Observations suggest that Dense Shelf Water (DSW) overflow is the primary contributor to AABW (Orsi 
et  al.,  1999,  2002), and DSW formation is sensitive to the meltwater (Hattermann et  al.,  2021; Silvano 
et al., 2018). However, most CMIP6 models simulate AABW formation via deep convection due to the limi-
tations of their coarse resolution (Heuzé, 2021; Mohrmann et al., 2021; Purich & England, 2021). Changes in 
deep convection may impact deep-ocean properties and circulation (Heuzé, 2021; Zanowski et al., 2015). The 
reduced deep convection hinders the sinking of cold surface water, contributing to deep-ocean warming and 
AABW volume contraction, consistent with previous studies on Antarctic meltwater effects (Li et al., 2023; 
Mackie et al., 2020; Park & Latif, 2019). However, we found no strong correlation between deep convection 
and deep-ocean warming across seven models (Figure S4 in Supporting Information S1), suggesting other 
factors like enhanced stratification, may also contribute to deep warming and surface cooling by limiting 
upward vertical mixing of subsurface heat (Chen et  al.,  2022). Furthermore, the meltwater-induced pole-
ward shift of warm, saline Circumpolar Deep Water and the weakening of the lower cell of the overturning 
circulation (Figure S4 in Supporting Information S1) could also be associated with deep-ocean warming (Li 
et  al.,  2023; Moorman et  al.,  2020; Purich & England, 2021). These mechanisms may have already influ-
enced SO climate, evident in observed AABW warming and contraction (Aoki et al., 2015; Purkey & John-
son, 2010, 2013; Shimada et al., 2022), overturning slowdown (Gunn et al., 2023; Zhou et al., 2023), as well 
as surface cooling or delayed warming south of the ACC (Armour et al., 2016; Haumann et al., 2020). It is 
noted that our results are based on an idealized experiment with meltwater input of greater magnitude than 
historically observed mass loss from Antarctic grounded and floating ice shelves (Slater et al., 2021), and thus 
cannot be directly applied to interpret observed changes in the SO. Nevertheless, our study suggests that inclu-
sion of changing Antarctic meltwater in coupled climate models is important due to the far-reaching climate 
responses in the SO.

In addition to the robust responses, it is important to consider the variability among models. The magnitudes 
of changes in both deep convection and AABW volume varies strongly across models and are correlated with 
their respective mean state in piControl (r 2 = 0.79 and r 2 = 0.93, respectively; Figure S4 in Supporting Informa-
tion S1) This indicates that the models' base state strongly influence deep convection and AABW volume anom-
alies. Differences in the ocean temperature changes (Figure 4) also exist among models, but no robust correlation 
is found between the anomalies and mean state magnitudes. Future research could benefit from including a larger 
model ensemble in intermodel comparisons to further evaluate the robustness of the results presented here.

We acknowledge that meltwater from Antarctica's ice shelves enters the ocean over a certain depth range instead 
of at the surface and also may be spatially distributed farther offshore by icebergs rather than only along the coast, 
both of which may have implications for the responses presented here. Unlike in reality, where the majority of 
mass loss occurs near Amundsen Sea (Davison et al., 2023; IMBIE, 2018), this study assumes a uniform distribu-
tion of meltwater surrounding the Antarctic coast. However, previous studies have not found substantial sensitiv-
ity to the different location of meltwater input (Park & Latif, 2019; Swart & Fyfe, 2013), which may be advected 
around the continent within about ten years (Dawson et al., 2023). Incorporating a more realistic representation of 
meltwater would enhance our understanding of its influence. These uncertainties are addressed in SOFIA Tier-2 
and Tier-3 experiments (Swart et al., 2023), and could be examined once the model output becomes available. It 
is noteworthy that the intermodel differences in mean state are always larger than those in the response, particu-
larly for deep convection volume and deep ocean temperature. This underscores the necessity for coupled climate 
models to accurately capture the SO's mean state, including a more realistic simulation of dense water formation, 
thereby reducing model uncertainty and improving models' performance in projecting future changes.

 19448007, 2023, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
106492 by PO

L
A

R
 IN

ST
IT

U
T

E
, W

iley O
nline L

ibrary on [22/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

CHEN ET AL.

10.1029/2023GL106492

9 of 11

Data Availability Statement
The authors acknowledge the use of various data sets that significantly contributed to this research. The data 
of the freshwater experiments are available in Swart et  al.  (2023), the CMIP6 piControl experiments Eyring 
et  al.  (2016). The WOA18 data (potential temperature and salinity) are available in Boyer et  al.  (2018) and 
ORAS5 re-analysis data (mixed layer depth) are from Copernicus Climate Change Service (2021).
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