

Fram Strait Cruise Report

FS2023 - Cruise ID 2023007015

30 August - 13 September 2023

Longyearbyen - Longyearbyen

Editor: Laura de Steur (laura.de.steur@npolar.no) Norsk Polarinstitutt 9296 Tromsø, Norway

Table of Contents

1. Cruise Overview	3
2. Participants	4
3. Sailing log	5
4. Mooring operations during FS2023	7
4.1 Moorings recovered during FS2023	7
4.2 Moorings deployed during FS2023	10
5. CTD Measurements	
5.1 General Approach	
5.2 CTD Package Configuration	13
5.3 CTD Section	14
5.4 Validation of CTD salinity measurements	14
6. VMADCP and LADCP measurements.	19
7. Sea ice work	
8. ARGO deployment	
9. Outreach.	
Appendix A: Diagrams of moorings recovered	
Appendix B: Diagrams of moorings deployed	
Appendix C: LADCP script files.	

1. Cruise Overview

The objective of the annual cruise of the Norwegian Polar Institute to Fram Strait is to service the Arctic Outflow Observatory in the western Fram Strait. The purpose of this observing system is to monitor the properties of the Arctic freshwater, sea ice, and returning Atlantic water, as well as the state of ocean acidification, CDOM and nutrients in the East Greenland Current.

The main priority was to recover and redeploy seven NPI moorings across the East Greenland Current at 78°50' N. Unfortunately, two moorings on the shelf (F20 and F17) were lost. Those two and F13, F12, F11 were in the water for two years (since 2021), while F10 and F14 were serviced in 2022. In addition, we carried out the main CTD/LADCP section including extensive water sampling for various tracers across the whole Fram Strait along the 78°50'N line. The main CTD section extended to 14°W where we met land-fast ice.

While we move westward on the CTD and mooring section, sea ice physics work was carried out across the East Greenland Current and Greenland shelf to collect in-situ observations and measurements of sea ice and snow properties for validation of CIRFA remote sensing products. Three cruise days were provided by CIRFA for this purpose (contact T. Eltoft (CIRFA, UiT)). The work included in-situ work (ice thickness measurements and coring) on some selected drifting sea ice floes in the EGC and on land-fast ice stations on the Belgica Bank nearby 14°W,79°N. Iceberg and sea ice observations were done from the vessel as well. Prioritization and timing of moorings, CTDs and sea ice stations will be guided by sea ice images (Sentinel-1 wide swath). CIRFA set up near real-time transfer of satellite imagery and classification results to the ship to support navigation and decision making for route planning during the cruise. These observations help to validate and improve the classification products.

In addition, two ARGO float deployments were carried out by DTU (led by C. Stedmon (DTU Aqua)) on the shelf with the aim to profile the water column for a year or more, and which are parked near the bottom after each profile or if there is ice.

2. Participants

Organisation

Chief scientist

1 Laura de Steur

Sea ice NPI:2 Dima Divine (co-chief scientist)3 Martine Nyhagen (polar bear protection and safety)

Sea ice CIRFA: 4 Johannes Lohse (CIRFA lead, postdoc) 5 Henrik Fisser (PhD student)

CTD DTU-Aqua:

6 Colin Stedmon (CTD lead + ARGO floats)
7 Camila Serra Pompei (Postdoc)
8 Bodil Berendt Toftegård (Msc student)
9 Caroline Gjelstrup (PhD student)

CTD ETH Zurich: 10 Marcel Scheiwiller (PhD student) 11 Aline Schneuwly (MSc student)

CTD Univ. Edinburg 12 Marta Santos Garcia (PhD student)

Moored instrument data NPI: 13 Hege-Beate Fredriksen (postdoc)

Technical support:

14 Kristen Fossan (NPI, mooring lead)15 Jan Are Jakobsen (NPI, moorings and sea ice)16 Thomas Haug Johnsen (NPI, internship)

Outreach:

17 Trine Lise Sviggum Helgerud (NPI)

3. Sailing log

Note: all times in local shipboard time unless UTC is specified. Times are approximate, not exact.

Wed 30.08.23	Departure from LYR at 15:00 local time. Most loading was already done the day before since we could have the dock today. Started steaming to 1°W for first CTD where there will be sea ice.
Thu 31.08.23	First CTD at 1°W at 13:30 local time. Steam to F10 at 2°W. Quite a lot of ice, so we go at ~5 to 6 kn. At F10 too much and heavy ice floes so too risky to release F10. Likewise for CTD at 2°W, too much for CTD over the side. Do not want to risk contaminated sensors in the moonpool so we go to 2.5°W to try a CTD there. CTD at 3°W late night
Fri 01.09.23	Recover F11 in morning. CTDs at 3.5°W, 4°W. Too much ice to recover F12 in afternoon. Wait and try sea ice station first. Ice station 4 pax for 2 hrs with use of small boat, aborted due to fog. Instead F12 recovery, on deck by 21:30. CTDs at night until we get to F12
Sat 02.09.23	Recover F12 and F13. CTDs in between as well as at 6.5°W. Put on the SUNA nitrate sensor on CTD at 6°W station (it can only go down to 500 m) and profile with that for the rest of the shelf. Aim to get F14 but too much ice to recover. Continue with CTDs at 7, 7.5 and 8°W at night, be at F14 again early Sunday morning.
Sun 03.09.23	Recovery of F14 at 8:15 am in between ice floes, lots of large floes nearby, need to time it well, and very foggy. On deck by 9:15. Steam to F17 after 9:15. On F17 site at 11:30, no sea ice, very foggy. Drive over it but no sign on EK80. No response from the release. Tried pinging several times, also 3 km, 5.5 km and 8 km south of the original mooring site. No signal. We continue to CTD at 8.5°W stopping one more time to ping and check. No reply; F17 lost Onward with CTDs at 8.5°W, 9°W, followed by ARGO deployment from Colin Stedmon (DTU) at the same location. CTD at 9.5°W. Mooring F20 site at 19:45. No contact with release, tried about 5 locations around it, and 2 south of it. No contact, nor any visual on the EK80 at or near the site; F20 lost . Demonstrates the big loss after not having serviced these each year, i.e. two 2-year long data gaps on the shelf instead of 1 year. Continue the evening/night with CTDs between 10°W and 14°W until we reach land-fast ice in the morning.
Mon 04.09.23	In the morning still going westward with CTDs until about lunch time. It was going slower at night than expected, due to sea ice and bad visibility and rain. Start work on land-fast ice with use of basket after lunch. Lots of broken up, not as 'fast' as expected from sat images. Second ARGO float deployed at ~11 W. One CTD at the end of the ice station (70 m), at about 14°W as the 'end of the section' point. During the night, move to the north ~79°N ~ 14°W and continue with sea ice work all day Tuesday.
Tue 05.09.23	Work on land-fast ice all day about 79°N, 14°W, north of the section.
Wed 06.09.23	Ice work between 9-11 at about 79°N, 13.25°W Steam to 10°W, 78°50'N Deploy F20 10°W (~16:00) in extremely nice and calm weather, no sea ice. Mirror flat Deploy F17 8°W (~20:00) in good and calm weather, quite a lot of sea ice (so takes longer to get there) but hardly any drift so easy to deploy on DP. Done by 22:22 local time. Steam to F14 site

Thu 07.09.23	Sea ice station nearby F14 site. Spool on wire for F14 in order to deploy after lunch. Deployed F14 (14:00, after some delay with the crane). CTD to 500 m with SUNA at 5.5°W and prepare for F13. Deployed F13 successfully (at about 21:00 after some finetuning due to ice and water depth). CTDs to 500 m with SUNA at 5°W, 4°W while steaming eastward to F10 mooring site to try to recover it Friday morning, given good ice conditions there seen on satellite images.
Fri 08.09.23	Arrival at F10 site around 7:00. Inspect drift and ice situation. Need to release it quick in an open water area before it gets covered again. Released at 8:15 local time and on deck at 9:15. Take 500 m deep CTD at 2°W and 3°W while steaming back west to F12 site. Take off the SUNA after that. Quite a lot of ice so steaming takes longer (going at 4 to 6 knots) so no time for sea ice station in between, instead position nearby F12, inspect sea ice conditions and drift. Start deploying F12 at 17:55 local time, done by 18:10. Smooth and easy. Spool on wire for F11. Steam northward during night to be well north of F11 the next day taking into account drift of about 1 knot.
Sat 09.09.23	Sea ice station starting at about 5 nm north of F11 site, while drifting south. Inspect sea ice conditions and drift north of F11, start upstream about 1.5 hr / 1.5 nm. Start deploying of F11 after lunch at about 13:00. Finalized much later in the evening about 19:00 due to having to find out where it was after it got stuck in an ice floe and was dragged along (whole mooring including anchor hanging under a ridge after the top kevlar of the top release broke). After breaking the ice floe it sank after all but it was unclear where it ended up exactly. Several locations for pinging the release and fine tuning speed of sound for the deck unit (from 1500 to 1469) allowed to spot it (anchor and 1500 m group) on the EK60, however, likely too deep, or rather, too short kevlar for the top to be closer to the surface) Spool on kevlar for F10 in the evening.
Sun 10.09.23	Deep CTD at 0° at about 02:30 local time. Steam back to 2°W. CTD at F10 site at 07:30 local time. Preparations on deck and last instrument programming for F10. Start deployment F10 about 13:05, reposition slightly for drift and speed, to be on the site (with 0.9 knots and straight southward drift) after 1hr 15 mins. Ice from north pushing us while we are in a large lead. Excellent deployment done at 14:37 local time (with IceCAT). After that, start CTD section eastward from 1°E to continue the section until Svalbard.
Mon 11.09.23	We continue the CTDs all day along the 78°50'N section. While steaming to the east on section and doing CTDs eastward, there is an encounter with Russian vessel Yantar at about 11:45 local time. They turn to follow us, and keep doing so all day and night until 05:05 the next day. They are between 350 m to 700 m distance from us and monitor all we do. They stop along side starboard or aft starboard when we stop on a station. There is contact with them on radio by the Captain, and IMR and NPI are both informed. A Norwegian coastguard vessel is nearby and following the Yantar. We proceed our work as normal and ask the Yantar to keep a safe distance of at least 500 m. We

	continue with CTDs overnight.
Tue 12.09.23	We finish the CTD section at ~10:30. Russian vessel Yantar left us at about 05:05 in the morning. Steaming to Longyearbyen (~12 hrs). Arrival at about 20:00.
Wed 13.09.23	Finalize packing, cleaning and offloading

4. Mooring operations during FS2023

Two out of 7 Fram Strait Arctic Outflow Observatory moorings were lost. We do not know when. There was no sign of any release on the sea floor and searching in a radius of 8 km did not give any response of the releases. Since the formal Fram Strait cruise was cancelled in 2022 and only F10 and F14 were serviced by Silver Arctic in 2022, the loss of F20 and F17 on the shelf implies a data gap of two years for F17 and three years for F20 with respect to current measurements since we did not have sufficient spare ADCPs to redeploy on F20.

F10, F11, F12, F13 and F14 were recovered in good shape. All 7 moorings including a 'slim' version of F20 were redeployed. The moorings F20, F17 and F10 are equipped with IceCATs to obtain salinity and temperature data as close as possible to the surface, with a target depth of ~25m. F10 at ~2°W is funded through the NorEMSO project, a NFR infrastructure project. Sunburst SAMI instruments for pH and pCO2 were deployed on F10, which did not work last time. We added a SUNA nitrate sensor to F17, borrowed from Are Olsen at UiB.

Mooring	Position	Depth	Date and	Instrument	Serial #	Instrument
		(m)	time (UTC)			depth (m)
F10-18	N 78° 49.636'	2651 m	Deployed:	SBE37-IM weak	22259	26
	W 01° 57.077'		17 Sep 2022	link	(wrong in last	
			10:50 UTC		year's report)	
				ADCP	16831	44
			Recovered:	Data logger		46
			8 Sep 2023	Nortek AQD	15910	49
			06:15 UTC	RBR CTD+ODO	** 207317	52
				RBR CTD+	**207318	220
			Top float of	SBE37	20789	220
			weak link on	Nortek AQD	15888	223
			EK80 at 25	SBE37	22261	2636
			m depth	Nortek AQD	15877	2640
				AR861	2879	2642
F11-23	Drop of top:	2474 m	Deployed:	IPS5	51062	44
	N 78° 49.109'		16 Aug 2021	SBE37	3492	46
	W 03° 03.087'		12:42 UTC	ADCP	17462	50
	Note: 1.2kt			SBE37	10294	150
	drift upon		Recovered:	SBE37	3996	273
	deploying!		1 Sep 2023	RCM9	1049	276
	Anchor		06:27 UTC	SBE37	7061	1526
	position likely			RCM11	538	1529
	further north,		16/8/21	SBE37	8821	2439
	250m group on		changed out	RCM Seaguard	834	2442
	EK80 seen at		50 m kevlar	AR861	499	2444
	78° 49.350'N		with 40m to			

4.1 Moorings recovered during FS2023

	03° 02.840'W		get top			
	$(\pm 0.3 \ nm)$		lower than			
	north!) YES		in 2020			
F12-23	N 78°48.968'	1848 m	Deployed:	IPS5	51167	52
	W 04° 00.730'		15 Aug 2021	SBE37	14099	54
		(EK80	19:43 UTC	ADCP	20021	65
	Note 1/9/23:	depth		SBE37	13252	150
	corrected error	about	Recovered:	SBE37	3994	275
	in earlier	17 m too	1 Sep 2023	RCM9	836	279
	versions	much?)	17:57 UTC	SBE37	13505	1476
	with lat 49.968			RCM11	556	1480
	which should			SBE37	8226	1817
	be 48.968'N			RCM Seaguard	345	1820
				AR861	500	1822
F13-23	N 78° 50.333'	1018 m	Deployed:	IPS	51140	50
	W 04° 59.927'		14 Aug 2021	ADCP	18070	56
			20:01 UTC	SBE16	7253	58
				AURAL	N/A	72
			Recovered:	SBE37	7060	147
			2 Sep 2023	SBE37	3995	245
			06:25 UTC	RCM9	1326	248
				SBE37	13504	996
				RCM Seaguard	883	1000
E14 24	NI 700 10 011	277	Daplayadi		/43	1002
F14-24	$N / 8^{\circ} 48.844$	211	Deployed:	IPS SDE27	51158	50
	W 00 29.788		15 Sep 2022		24519	00 64
			11.57 010	Nortek AOD	16603	66
			Recovered	SRF37	13253	108
			3 Sen 2023	SBE57 SBE56	10330	211
			06·40 UTC	SBE56	10331	236
			00.10 010	SBE37	3992	261
			Top float on	Nortek AOD	16764	264
			<i>EK80 at 59</i>	AR861	409	266
			m depth in			
			2022			
F17-18	N 78° 50.139'	230	Deployed:	SBE37-IM weak	23259	30
	W 08° 06.233'		13 Aug 2021	link		
			21:00 UTC	Data logger	NPI004	52
TOOT				SBE16	7212	54
LOST			3 Sep 2023:	ADCP ext. battery	24385	107
			LOST.	SBE16	7339	108
			No contact,	SBE56	3942	170
			no signs on	SBE50	3943	196
			EK80	SBES/	14098	210
					1525	218
F20.2	N 78° 50 100'	326	Deployed	SRF37 IM wook	20128	30
120-2	W 10° 08 813'	520	13 Aug 2021	link	20120	50
	W 10 00.015		13 Aug 2021	Data logger	NPI003	54
			11.09 010	SRE37	9852	56
LOST			3 Sep 2023.	ADCP ext_battery	727	106
			LOST	SBE37	7059	109
			No contact.	SBE37	7055	313
			no signs on	RCM7	9694	316

	EK80	AR661	410	318

 Table 2: Moorings recovered during FS2023.

Note: F11, F12, F13, F17, and F20 had been out for 2 years since Aug 2021, while F10 and F14 were serviced in Sep 2022.

***RBRs on F10 should not have been redeployed in 2022. Error on previous cruise. This implied now we had to redeploy one SBE37 here without calibration.*

Notes of moored instruments deployed in 2021:

- Five ACDP calibrations were carried out in May in Tromsø, two ADCPs recovered on F20 and F17 on the cruise will get external battery pack, however, still a calibration on ice needed for these two with the external battery ==> OK (12/08/2021)

- NOTE: One large ADCPs (SN 18070, F13-23) was not disconnected after calibration and showed very low voltage on the ship: Kristen changed to new batteries and so this one needed to be recalibrated on land-fast ice again before deployment in '21 ==> OK (12/08/2021)

Notes of moored instruments recovered in 2023:

- Whole moorings F17 and F20 were lost after having been out for two years; no contact with none of the releases and no sign of it on the EK80. Several attempts to contact to release from various sites and distances but no success, also followed and tried to find it on a line up to 8 km south of the mooring site. No success. Both IceCATs lost.

- IPS: All IPSs had worked well as far as we can see from the data files:

F14: one year data Sept 2022 - Sept 2023

F13: two years data Aug 2021 - Sept 2023

F12: two years data Aug 2021 - Sept 2023

F11: one year data Sept 2022 - Sept 2023, sampling frequency 2 sec.

- ADCP:

F14: one year data Sept 2022 - Sept 2023 but sampling only every other hour.

F13: two years data

F12: two years data

F11: two years data

F10: one year data

- F10:

- IceCAT with Data Logger was recovered. Had data for whole year from ~28 dbar depth.
- Both RBRs were redeployed in 2022 from Silver Arctic after having been in water for one year. Unclear why. Specially given there was an SBE37 placed also at 220 m next to the second RBR+. The RBR+ at 220 m one did not work at all, the 56 m RBR+ODO only worked until Feb. 2023.

- F10-16 was financed by the NorEMSO project / NFR infrastructure.

4.2 Moorings deployed during FS2023

Mooring	Position	Depth (m)	Date and time (UTC)	Instrument	Serial #	Instrument depth (m)
F10-19	N 78° 49 628'	2668 m	Deployed:	SBE37-IM weak	22260	27
11012	W 01° 57.074'		10 Sep 2023	link	0	
			12:37 UTC	ADCP	24899	52
				Data logger	NPI005	53
			Strong drift	SAMI pH+pCO ₂ *	227/261	57
			about 0.9 kn	RBR CTD+ODO	205002	58
			south, anchor	SBE56	12966	125
			likely north	SBE56	12967	175
			of drop	AQD	15877	220
			position.	SBE37**	20789**	221
			-	AQD	16603	760
				SBE37	23266	2634
				AQD	16764	2639
				AR861	2425	2641
F11-24	N 78° 48.601'	2474 m	Deployed:	IPS5	51062	54
	W 03° 04.708'		9 Sep 2023	SBE37	3490	56
	**		14:23 UTC	ADCP	24830	60
	Approximate	** 1500 m		SBE37	12233	150
	NOTE: drama	group and		SBE56	12959	175
	deployment.	anchor seen		SBE56	12965	200
	See below;	on the EK80	Duration ~1	SBE37	4702	244
	mooring ended	after	hr + 20 min?	RCM Seaguard	1846	247
	up further	searching		SBE37	3552	1496
	south than	and tracking;	Duration 6	RCM11	494	1499
	planned. To be	triangulation	hrs due to	SBE37	8227	2409
	corrected	corrected for	messing up	RCM8	10071	2413
	again in 2024.	sound speed.	last 10 mins.	AR861	287	2416
F12-24	N 78° 49.121'	1833 m	Deployed:	IPS5	51167	52
	W 04° 01.341'		8 Sep 2023	SBE37	3489	54
			17:03 UTC	ADCP	16876	65
				SBE37	14100	150
				SBE56	12963	175
				SBE56	12968	200
				SBE37	4837	264
			Duration	RCM Seaguard	884	267
			1 hr + 13 min	SBE37	3554	1471
				RCM11	235	14/4
				SBE37	8822	1814
				KCM11	228	181/
F12.24	N 700 50 4251	1027		AK801	128	1825
F13-24	N /8° 50.435	102/m	Deployed:	IPS ODE25	51064	50
	W 05° 00.433		7 Sep 2023	SBES/		52
			19:45 010		18151	50 79
				AUKAL	304	/0
				SBES/	12234	152
				SDESU SDE56	12700	1/5
			Duration	SDESU SDE37	12701	200
			\perp 1 hr	DCM0	1227	257
				SDE27	1527	237
				DCM11	561	
				AR861	053	1011
1	1	1	1	111001	055	1015

F14-25	N 78° 48.864'	274	Deployed:	IPS	51138	50
	W 06° 30.192'		7 Sep 2023	SBE37	7058	52
			12:36 UTC	ADCP	17461	56
				SBE37	7054	112
				SBE37	9853	150
			Duration32	SBE56	12964	175
			min	SBE56	12958	200
				SBE37	7057	257
				RCM9	1046	260
				AR861	568	267
F17-19	N 78°50.196'	227	Deployed:	SBE37-IM weak	23250	32
	W 08° 04.754'		6 Sep 2023	link		
			20:22 UTC	Data logger	NPI002	52
				SUNA Nitrate (Are	NTR 1126	54
				Olsen, UiB)		
			Duration	RBR CTD+CDOM	204799	56
			28 min	Nortek Sig 250	103528	107
				RBR CTD+CDOM	204800	108
				SBE56	10331	175
				SBE56	10330	200
				SBE37	9650	216
				RCM8	12733	218
				AR661	2426	220
F20-3	N 78° 50.100'	330	Deployed:	SBE37-IM weak	22258	28
	W 10° 08.815'		6 Sep 2023	link		
			15:22 UTC	Data logger	#20	56
				SBE37	9651	56
				SBE37	12232	106
			Duration	RCM7	7718	109
			32 min	SBE37	10295	313
1	1			AR661	291	318

Table 2: Moorings deployed during FS2023.

* pH/pCO2: P0261/S2CA01

* SBE37 20789 re-cycled after 2022-'23 - not serviced

Moored instrument related preparations:

- Five ACDP calibrations were carried out, see table below.

- SUNA nitrate sensor (SN 1126) from Are Olsen (UiB) was added to F17. Placed in a frame from NP, using two clamps (SBE9 cage, SUNA V2, 2.5" DIA MOUNT CLAMP, product nr. 236440) from Arild Sundfjord. TO DO: replace when we return!!!

- Consider to buy an extra top frame (normal type) for the float of the Nortek Signature 250 so that it can be in-line in case one does not measure ice draft/drift. Now we used one that is not in-line for ice draft purposes, but there was stuff to be mounted above it still, not great, a ships based fix with kevlar.

Notes on deployment of F11-24:

Start deploying of F11 after lunch at about 1 pm. Finalized in the evening about 19:00 due to having to find out where it was after it got stuck in an ice floe and was dragged along (whole mooring including anchor hanging under a ridge after the top kevlar of the top release broke): After breaking the ice floe, the mooring sank after all but it was unclear where it ended up exactly. Several locations for pinging the release and fine-tuning speed of sound for the deck unit (from 1500 to 1469 m/s) allowed to spot it (anchor and 1500 m group) on the EK60, however, likely too deep, or

rather, too short kevlar for the top to be closer to the surface...)

NOTE: the drawings between 2 versions of F11 need to be fine-tuned, need to be the same lengths, not different versions.

NOTE: F11 ended up way too far south now because of problems with deployment, and should not be there. To be corrected in 2024.

ADCP calibrations FS2023:

5 ADCPs calibrated in Tromsø (2 June 2023):

SN 17461 (2°), 16876 (1.6°), 18151 (1.0°) calibrated at Holt, Tromsø. All good!

SN 24830 did not get an error less than 13.1° after 3 different attempts and after a battery rotation. We made a look up table using the rotating table to do post-calibration after recovery in 2024.

SN 24899 did not get an error less than 10° after 2 different attempts. We made a look up table using the rotating table to do post-calibration after recovery in 2024.

Deployment plan:

F20 @ 100m	F17 @ 100m	F14	F13	F12	F11	F10
727 with external battery lost	23485 with external battery lost	Calibrated in Tromsø (2/6/23)	Calibrated in Tromsø (2/6/23)	Calibrated in Tromsø (2/6/23)	Calibrated in Tromsø (2/6/23)	Calibrated in Tromsø (2/6/23)
RCM7	Nortek Signature 250 - no compass calibration	Error after cal: 2°	Error 1.0°	Error after cal: 10°	Error after cal: 13.1°	Error after cal: 1.6°
Lithium	Lithium	Lithium	Alkaline	Lithium	Lithium	Lithium
N/A	Ice track + draft	BTM track	BTM track	BTM track	BTM track	ICE track
N/A	SN 103528	SN 17461	SN 18151	SN 24899	SN 24830	SN 16876

Updated: 7 Sep 2023

Lost:

Both ADCPs (SN 727 and 23485) with external battery cases on F20 and F17 resp. were lost since the whole moorings were gone. These ADCPs need a one time calibration either on land fast ice, or land, or with crane and rotating in air.

Triangulation to get position to the release:

By measuring the distance from the ship on multiple locations to the acoustic release on bottom, we can use pythagoras to determine distances along the surface to the mooring position. If we measure close to a mooring that is located in deep ocean, small errors in measured distances can give large errors in the distance calculated along the surface.

Errors in measured distance (hypothenuse in the triangle) to be aware of:

An older instrument for release was used during this cruise, where the speed of sound in water cannot be adjusted. Normally the speed of sound is then set to 1500 m/s, while the echosounder on the ship was set to 1469 m/s. By correcting the measured distance by the factor 1469/1500 (about 2% reduction) we got a much better estimate of the location where mooring F11 was dropped.

Corrections in the depth estimate:

The acoustic release that we ping is located 10 m above the sea bottom, and the hydrophone is about 15 m below surface when making measurements, so we can subtract a total of 25 m from the depth estimate when using it for triangulation.

5. CTD Measurements

5.1 General Approach

The CTD used was an SBE911+ unit. The T, S and O_2 ducts was flushed with Triton-X and freshwater between stations, which was blown out by mouth just before deployment, to avoid problems with icing. At the beginning of stations, the CTD was lowered to 10 dbar to soak until the pump started and sensors stabilised. The CTD was then brought up to the surface for start of the profile, and lowered to 10 m above the seabed as determined using the altimeter. Data acquisition was generally initiated just before deployment with the CTD on deck and allowed to run until the CTD was back on deck at the end of the cast.

During FS2023, the CTD was always lowered over the side of the ship in the conventional way, the moon pool was not used. Niskin bottles were closed using the bottle fire command within the Sea-Bird acquisition software so that a .bl file was created for each cast when bottles were fired. NMEA time and position information was fed to the acquisition computer and added to each scan line of the data files. Cast positions and starting times were also automatically added to the header of all data files.

Channel	Sensor	Serial Number	Last Calibration
Frequency 0	Temperature 1	5127	30-Mar-2023
Frequency 1	Conductivity 1	2694	30-Mar-2023
Frequency 2	Pressure	141612	19-Dec-2017
Frequency 3	Temperature 2	6028	27-Apr-2023
Frequency_4	Conductivity 2	2045	30-Mar-2023
A/D Voltage 0	SBE43 Oxygen 1	3785	29-Nov-22
A/D Voltage 1	Altimeter	73084	24-Dec-2017
A/D Voltage 2	Chl a Fluorometer	FLRTD-6506	18-Sep-2020
A/D Voltage 3	(FREE)		
A/D Voltage 4	Transmissometer	CST-2003 DR	01-Oct-2019
A/D Voltage 5	CDOM Fluorometer	FLCRTD-4531**	12-May-2023
A/D Voltage 6	SBE43 Oxygen 2*	1259**	09-Aug-2022
A/D Voltage 7	(FREE)		
SPAR Voltage	SPAR Biosph/Licor	20568	27-Nov-2017

5.2 CTD Package Configuration

Table 5.1: CTD package configuration during FS2023. ** NPIs sensors.

5.3 CTD Section

The main east-west CTD section along the Fram Strait mooring array line at 78°50'N was carried out, which is repeated annually, Figure 5.1. There was quite a lot of ice in the EGC and again on the shelf where land-fast ice extended to about 14°W, implying the western end of the section. Types and number of samples collected during the cruise are summarized in Table 5.2.

Figure 5.1: Main CTD section across the Fram Strait at 78°50'N showing the upper 1000 m only. Black diamonds mark the CTD positions, the magenta/red diamonds mark mooring sites. Measurements are from the primary temperature (top panel) and primary salinity (bottom panel) sensors.

5.4 Validation of CTD salinity measurements

A. Nikolopoulos (NPI. post-cruise)

Water samples for laboratory salinity measurement were collected along the main Fram Strait section at the standard depths where tracer samples were collected: 1, 5, 15, 25, 50, 75, 100, 150, 200, 250 and 400 dbar, plus one sample from the bottom of the water column. Where time and rosette capacity allowed additional deep-water samples were collected.

All the temperature and salinity sensors performed well during the cruise. Throughout the cruise,

for bins/depths subject to a gradient less than 0.002 °C or S/m, the mean difference between sensor group 1 and sensor group 2 was:

Temperature -0.00041 °C (400 m-bottom) and -0.00049 °C (1000m-bottom) Conductivity 0.00040 S/m (400 m-bottom) and 0.00043 S/m (1000m-bottom)

The salinity samples could not be analysed on board since the Guildline Portasal portable salinometer from NPI (SN 74176) was not performing well at the end of the cruise prior to FS2023. The salinometer was sent back to the UK from Longyearbyen for service and a salinometer from UNIS was borrowed instead (R. Skogseth, F. Nilsen). this did, however, not work well either. The thermistors in the bath did not line up and gave completely different temperatures. The problem remained and could not be fixed on board. Salinity samples were taken on all whole degree stations and shipped back to Tromsø for on-land analysis post-cruise.

The laboratory analysis was eventually carried out at NPI in February 2024, when the salinometer initially brought on the FS2023 (Guildline Portasal; SN 74176) was repaired and functioning again. The samples were analyzed based on salinity with help of standardization after every 24 measurements using IAPSO P-series standard seawater. The salinometer maintained a stable bath temperature and provided stable readings throughout the analysis period (21-24 February 2024).

Comparison of the CTD-salinity measurements vs. the laboratory salinity measurements was limited to samples where the absolute difference between the sensor and lab values was less than 0.01. The offset was calculated to 0.002 ± 0.003 practical salinity units for the primary sensor group of the CTD system and -0.005 ± 0.003 practical salinity units for the secondary sensor group (see Figure 5.2). These results were valid both when accounting all water samples through the entire water column (that is, below 0 m depth), and when only using samples below 400 m depth where salinity is less variable (as well as for the 11 samples below 1000 m depth, not shown).

While the variability (standard deviation) was very similar for both sensors, the offset itself was rather different between them (0.002 vs -0.005, respectively). Based on the smaller offset, and hence a better-balanced distribution (i.e. centred around zero offset), we only recommend the use of the primary salinity sensor values onward. As both the offset and the associated standard deviation are smaller than the expected accuracies of the laboratory salinometer (± 0.003 psu) as well as the CTD salinity sensor (± 0.003 psu), there is no need to further correct the salinity values before use.

Figure 5.2: Histograms showing the difference between the CTD sensor salinity and in situ sampled (laboratory) salinity for the primary CTD sensor group (left hand panels) and secondary sensor group. The comparison was made for two different depth intervals: samples from the entire water column (upper panels) and samples restricted to below 400 m (lower panels).

Water sampling

Water sampling was performed on 34 stations along the Fram Strait transect. Samples were taken with Niskin bottles attached to the Rosette system (24 bottles total, 8 liter each) at selected sampling depths. The number of samples per profile ranged between 8 and 17, depending on the local bathymetry. See Table 5.3 for an overview of all samples from all stations.

CDOM/DOC/Nutrient sampling carried out according to plan between 14°W and 9.5°E along the 78°50' N parallel. CDOM and DOC samples taken at standard carbon stations and depths, and the Chl-a maximum. Nutrient, alkalinity/DIC, salinity and \int^{18} O-H₂O samples taken standard tracer stations and depths, and the Chl-a maximum.

CDOM samples were measured on board (spectral fluorescence and absorption). DOC and nutrient samples will be measured on return to DTU. Samples for ¹³⁷Cs and ²³³U were also shipped to DTU for analysis by Dr. Jixin Qiao.

Parameter	# samples	Responsible
Salinity	312 total (297 ocean)	NPI
∫ ¹⁸ O-H ₂ O	401	NPI
Alkalinity & DIC	238	NPI/IMR
Inorganic nutrients	401	DTU
CDOM and DOC	282	DTU
Stable isotopes of nitrate	377	Edin. Uni.
²³³ U	90	DTU
¹³⁷ Cs	109	DTU
POC	35	Edin. Uni
129 I & 236 U	120	ETH
¹⁴ C-DIC	119	ETH

Table 5.2: parameters and number of samples take from the CTD rosette.

		CDOM	D180 +	AT-	129I +					N Iso-
Station	S	+ DOC	Nutrients	СТ	236 U	233 U	Cs	POM	14C	topes
222	12	12	12	11	8	-	5	1	8	12
223	12	1	12	-	-	6	-	1	-	12
224	12	12	12	11	8	-	5	1	8	12
225	12	1	12	-	-	6	-	1	-	12
226	12	12	12	11	9	-	6	1	8	12
227	12	1	12	-	-	6	-	1	-	12
228	12	12	12	11	8	-	6	1	8	12
229	12	1	12	-	-	6	-	1	-	12
230	11	11	11	10	7	-	6	1	7	11
231	10	1	10	-	-	6	-	1	-	10
232	10	10	10	9	6	-	6	1	6	10
233	9	9	9	8	-	6	6	1	-	9
234	9	9	9	8	5	-	6	1	5	9
235	-	1	10	-	-	6	-	1	-	10
236	10	10	10	9	6	-	6	1	6	10
237	-	1	9	-	-	6	-	1	-	9
238	11	11	11	10	6	-	5	1	6	11
239	-	1	11	-	-	6	-	1	-	11
240	11	11	11	10	7	-	6	1	7	11
241	-	1	10	-	-	7	-	1	-	10
242	8	8	8	7	4	-	4	1	4	8
243	-	1	9	-	-	6	-	1	-	9
244	9	9	9	8	6	-	5	1	6	9
245	-	1	8	-	-	5	-	1	-	8
246	5	5	5	5	3	-	3	1	-	5
248	-	-	-	-	4	-	-	-	-	-
252	12	12	12	11	8	-	6	1	8	12
253	12	12	12	11	8	-	6	1	8	12
254	12	12	12	11	8	-	6	1	8	12
255	12	12	12	11	8	-	-	1	8	12
256	12	12	12	11	-	6	6	1	-	12
257	12	12	12	11	-	-	-	1	-	12
258	11	12	12	11	-	6	6	1	-	12
259	11	12	12	11	-	-	-	1	-	12
260	-	12	12	11	-	6	4	1	-	12
262	4	12	12	11	8	-	-	1	7	12
264	-	10	10	-	-	-	-	1	-	-

Table 5.3 Number of each type of water sample collected at each CTD station.

Iodine-129, Uranium-236 and Carbon-14 Marcel Scheiwiller (ETH Zurich)

The physical and tracer oceanography group at ETH Zürich studies the circulation pathways into and out from the Arctic Ocean and looks into new tools to constrain the freshwater fluxes to the Subpolar North Atlantic. In particular, Iodine-129 (I-129) and Uranium-236 (U-236), two artificial radionuclides that originate from the nuclear reprocessing plants at Sellafield (UK) and La Hague (France) are used. These man-made tracers, once discharged into the Irish Sea and English channel, respectively, travel northward with the Norwegian Coastal Current and enter the Arctic Ocean through the Fram Strait and the Barents Sea Opening. Every year, water samples in repeated stations across the Fram Strait are collected. On this cruise, 120 samples for I-129 and U-236 were collected in 3L containers. Later on, they will be subsampled to measure both tracers from the same container. The sampling for these two tracers is mainly focused on the outflowing part in the western Fram Strait, plus one station at 8°E to catch the inflow to the Arctic Ocean as part of the West Spitsbergen Current. The sampling concentrates on the upper layers with depths of 5, 25, 50, 100, 150, 200, 250 and 400 meters.

Carbon-14 (C-14) samples were collected in 120 ml glass bottles along with the I-129 and U-236. The sampling of C-14 followed the same structure as for I-129 and U-236 in terms of stations and depths. The C-14 samples were poisoned on board with HgCl2. After the cruise all samples were sent to Zürich where they are processed and measured in the lab. Results are used to understand pathways of Atlantic waters flowing in and out the Arctic Ocean, estimate its mixing and timescales of water circulation, as well as the fraction of fresher water exiting the Arctic Ocean.

N isotopes Marta Santos Garcia (Univ. Edinburgh)

A total of 377 seawater samples from the Fram Strait 2023 programme were obtained for stable isotope analysis of N and O of dissolved nitrate. Sampling was carried out according to plan between 12°W and 10°E along the 78°N 50' parallel. Samples were taken at standard tracer stations and depths, and the chl-a maximum. 37 samples of particulate organic matter were collected at the chl-a max of each station, following on-board filtering, for stable isotope measurements of organic nitrogen. Stable isotope analyses will be employed along with concentration parameters to understand the role of various N cycling processes in determining N availability. Results will help understanding how nutrient limitation is changing in the Fram Strait.

Stable isotope analysis of nitrate will be carried out in the Wolfson's Mass Spectrometry Laboratory at the School of GeoSciences, University of Edinburgh, as part of the PhD project of Marta Santos Garcia. The dataset collected will be interpreted in the context of a wide range of oceanographic and biogeochemical data collected during the cruise. Data synthesis and quantification will be achieved by constructing inverse and forward models describing Arctic N budget.

Table 5.3 lists the core water samples collected at each CTD station. During the cruise a paper log sheet was completed at each CTD station listing the depths at which bottles were fired and the samples taken from each bottle. Times, depths and positions manually recorded on log sheets are indented as a backup in the case of a problem with the data acquisition, not a replacement for electronically logged time and position data. There were no problems with time or position data during the cruise.

SUNA profiles from CTD casts

This year, we attached the SUNA nitrate sensor (SN 2096, A. Sundfjord (NPI)) on the CTD for profiles down to 500 m (max. depth rating). This was started when heading west onto the shelf at 6°W, and we did some more profiles returning east over deep water but just down to 500 m.

Figure 5.3 Preliminary display of the nitrate data from the SUNA together with CTD values. Figure courtesy: C. Stedmon (DTU).

6. VMADCP and LADCP measurements

During the cruise, both hull-mounted Vessel Mounted Acoustic Doppler Current Profilers (VMADCP) (38 kHz and 150 kHz) were used on the main transect across the Fram Strait to provide continuous measurements of ocean velocity. This meant it was turned on when leaving Longyearbyen and stopped when reaching Isfjorden on Svalbard.

Lowered Acoustic Doppler Current Profiler (LADCP) data were collected at all CTD stations. The set up consisted of a double-head LADCP system (one downward looking (master) and one upward looking (slave) ADCP) with external battery case on the large, 24-bottle CTD rosette. The data were processed using the LDEO processing package (Version IX.7 – IX.10) and detided with the barotropic tidal model (TMD2.03/DATA/Model_tpxo6.2). The two script files (Master.txt and Slave.txt) to program and start the LADCPs are given in Appendix C at the end of this report.

7. Sea ice work

The sea ice work on Fram Strait 2023 cruise was conducted by Dmitry V. Divine (NPI), Johannes Lohse and Henrik Fischer (UIT-CIRFA) with support from other members of the science crew who conducted bridge bear watch during the work on sea ice.

Sea ice cover in Fram Strait this time of the year at the transect latitude was more extensive than observed in previous year, with open to close drift ice (0.3-0.8) in the core of the EGC between 0 to 8°W, and more open drift ice towards the edge of fast ice that was at about 13.5°W during the KPH operation in the area.

Altogether the sea ice group conducted seven sea ice stations (see Table 1) that include four ice stations on drift ice and three on fast ice. A substantial fraction of sea ice observed outside fast ice area during the cruise was a thick second-year/multiyear ice, often ridged and deformed with wellelaborated melt ponds that started to refreeze. Ice thickness from visual observations and direct measurements varied within 1.5 m - 2.5 m thick. Thinner, around 1 - 1.8 m thick preferentially first-year ice was mainly found in the core of the EGC, closer to the ice edge. Ice floes had very variable sizes from medium (100-500 m) size floes often present west of 2° W to smaller floes (20 m-60 m) east of 2° W. Detailed regular observations of ice conditions were conducted during the cruise in the framework of ASSIST IceWatch observations (see below) and additional observations during the Sentinel-1, RCM and RS-2 radar satellites acquisitions.

The fast ice area next to Greenland on Belgica bank was situated within approximately 13.3-15.5°W and 78.51-79.30°N. Fast ice was found to be heavily ponded with melt ponds largely melted through (see also Figure IS3). The edge of fast was dynamic and in a state of continuous break up during the cruise, in response to changing winds.

Ice observations from the bridge (ASSIST)

Regular sea ice observations using ASSIST protocol (see https://cryo.met.no/en/icewatch) were made by members of sea ice team while RV KPH was in the ice-covered waters.

Sea ice conditions were observed on average every three hours, except for the nighttime between midnight and 7:00, from the observation deck of RV KPH. The observations were skipped during sea ice stations, though corrections to ASSIST observations were introduced based on direct measurements made on ice stations. Various sea ice parameters including sea ice types, floe sizes, snow cover, ridges etc. were recorded along with ship data (position, speed, and heading) and meteorological data (air and water temperature, air pressure, wind speed and direction, and humidity). Digital photos were taken with each observation (3 photos, looking out towards portside, bow, and starboard, respectively). In total 73 observations were made during the cruise while RV KPH was in the ice zone.

Preliminary results below (see Figure 7.1) show changes in observed sea ice concentrations along the cruise track. Observations will be uploaded to Icewatch ASSIST portal after the cruise and used, e.g. to support the improvement of automatized algorithms for interpretation of satellite based radar imagery.

Figure 7.1: Sea ice concentrations as observed along the FS2023 cruise track from the bridge based IceWatch ASSIST observations.

Sea ice stations and on-ice activities

Table 7.1 presents the list of ice stations conducted during the cruise with a general overview of the on-ice activities. Locations of ice stations are also shown in Figure 7.6. All collected data are found in the respective Ice Stations folder for Sea ice data for the cruise.

Date	#	time start (UTC)	lat (start)	lon (start)	Activities
01.09.2023	IST1	14:55	N 78.830	W 4° 0'	Ice coring for physics
04.09.2023	IST2	12:25	N 7 8° 46.62'	W14° 5.48'	Fast Ice South: Ice coring for physics and tracers
04.09.2023	IST3	16:59	N 78°47.718'	W 14°9.723'	Fast Ice South: Ice coring for physics
05.09.2023	IST4	07:45	N 79.126°	W 13.950°	Fast Ice North: Ice coring for physics and tracers; melt ponds; drone survey; GEM-2 survey; icebergs mapping.
06.09.2023	IST5	07:33	N 79.090°	W 13.256°	Ice coring for physics and tracers; drone survey;
07.09.2023	IST6	06:49	N 78.789°	W 6.89°	Ice coring physics and tracers; melt ponds;
09.09.2023	IST7	06:49	N 78.896°	W 3.024°	Ice coring physics and tracers; melt ponds; Ice thickness transect

Table 7.1: *List of ice stations made during the FS2023 cruise.*

Sea ice coring

On all sea ice stations, except for IST2, we collected a complete set of ice cores for the analysis of the physical properties of sea ice. It includes ice core samples recovered for salinity and temperature analysis, ice density, chemical analyses as well as an archive storage including later analysis of the microstructure.

At each coring event during ice station work, a dedicated ice core was collected to obtain the ice salinity profile using a 9 cm diameter Kovacs ice corer. Recovered cores were sectioned on site at 5-cm to 10-cm vertical resolution. Onboard, bulk salinity of melted sections were measured using a conductivity meter Cond 3110 SET3. Salinity is reported on the practical salinity scale (dimensionless).

At each coring event during ice station work, sea ice temperature profiles were also measured on one recovered ice cover within a few minutes from core extraction. The measurements were made using a thermistor probe Testo-720 in holes drilled at 10 cm spacing.

Additional cores for tracers studies were collected as bulk ice samples during stations S2 and S4-S7, one to three ice cores per station depending on time limitations. In total, 15 tracers cores at 7 ice stations.

Measured salinity and temperature profiles of sea ice cores recovered on Ice stations IST1, IST2, IST4 and IST7 are shown in Figure 7.2. Analysis of salinity profiles together with assessments of ice surface morphology made in situ indicate that ice floes of ice station IST1 and IST7 are more likely to be FYI, while IST2 and IST4 ice floes of fast ice are representative of the older ice types (SYI/MYI).

Figure 7.2: Salinity (left) and temperature (right) profiles in the ice measured from ice cores recovered on ice station IS1, IS2, IS4 and IS7.

Sea ice thickness surveys conducted by direct drillings and GEM-2 surveys

On Station IST4 on the Fast Ice North, sea ice thickness of the floe was additionally surveyed indirectly using the electromagnetic instrument sensor (GEM-2 by Geophex Ltd) towed on a small sled. The instrument includes a real-time data processing unit including a GPS receiver which communicates with a pocket PC that operates the sensor and records the EM and GPS data streams. Due to safety limitations, namely elongated and partly melted-through ponds in the area that makes their crossing with the instrument unsafe, the survey was limited to only two 70 meter-long lines nearly parallel to the melt pond. After the survey the transect measurements were also complemented by a sensor calibration, where the GEM-2 was placed at known heights above the sea ice surface using a wooden ladder on top of level ice with a known thickness determined by 5 drill holes. Preliminary result shown in Figure 7.3 suggests ice thickness to vary within 1.6-1.8 m on average along the transect lines with ice around two older ridges being up to 5 m thick.

Figure 7.3: Preliminary results of ice thickness along the GEM-2 transect conducted on ice station IS4.

On Station 7 we also conducted measurements of ice thickness along a 70 meter-long transect using direct drillings. The transect consisted of 14 drill holes with a nearly equal spacing of 5 m in both level ice and refrozen melt ponds.

Small drone work

On ice stations IST4 and IST5, weather conditions were favourable enough for flying a small drone over the ice station floes. The drone flights provided high quality downward looking images of the study area with a coverage large enough (more than few hundreds m²) that makes the acquired imagery useful to further support the interpretation of satellite radar images. It includes an accurate estimate of melt pond fraction and their stage of development as well as representativeness of the coring site for the local area around the vessel.

Figure 7.4: Photo of ice station IST4 taken from the elevation of about 120 m; one of the sequence of images collected during the overflight of ice station area.

The imagery collected during these two overflights will be processed/stitched together later. The derived orthophotos of the area will be subject to further analysis for melt pond fraction.

Iceberg observations

Icebergs in the Fram Strait originate from marine-terminating glaciers at the Greenlandic east shore. The iceberg observation program pursued an inventory of icebergs sighted along the oceanographic transect, and in the land-fast sea ice on the Greenlandic shelf. The observations were opportunistic and therefore do not depict the full picture of all icebergs encountered on the cruise.

With every registered iceberg, its coordinates, the ship coordinates, the time and further descriptions were noted. Photographs were taken, and the ship-based ice radar imagery was archived with the observation. In total, 34 individual icebergs were registered. There was an occasional overlap with satellite remote sensing acquisitions by Sentinel-1, Radarsat-2, and by the Radarsat Constellation Mission, which is noted in the iceberg inventory.

Most icebergs were observed on the Greenlandic shelf and particularly during the two fast ice stations. These icebergs are usually land-fast, which simplifies their reconnaissance in remote sensing imagery. However, we observed icebergs at 2.9°W and 3.5°W in the central Fram Strait on this cruise, which is about 400 km away from the Greenland coast. Figure 7.5 shows an example of iceberg identification and registration procedure from visual observations and ships ice radar imagery made during ice station IST4 on fast ice north on 05.09.2023.

Figure 7.5: Ice radar image acquired by Kronprins Haakon and iceberg photos taken during the iceberg observations at ice station IS4 on fast ice north on 05.09.2023. The iceberg length estimates were obtained from the ice radar image, which has a total width of 10 km.

Remote sensing work

Data availability

Remote sensing data from multiple sensors were acquired during the cruise. Besides freely available Sentinel-1 and Sentinel-2 imagery, these data include three high-resolution fine-quad-pol (FQP) Radarsat-2 images ordered by NPI, as well as multiple images from the Radarsat Constellation Mission (RCM), that were acquired in collaboration with *Environment and Climate Change Canada*. The precise number of available RCM scenes is unknown at the time of writing this report, but orders were placed for daily coverage of the fast ice edge between August 29th and September 13th for VV-HH low resolution (SC100M) and VV-HH high resolution (SC16M) modes. Furthermore, L-band SAR data (ALOS-2) of the area may be available through UiT the ESA-JAXA agreement. For possible use of the RCM or ALOS-2 data, UiT should be contacted. The three Radarsat-2 scenes were ordered for acquisition on the 04.09, 05.09 and 08.09. For at least one scene on 04.09, the KPH was within the acquisition frame while on ice station IST3 fast ice south.

Data transfer to KPH during the cruise

Before the cruise, a processing chain for download, processing, and transfer of Sentinel-1 images to KPH was set up on UiT servers. The workflow automatically downloaded all S1 scenes intersecting with an area of interest as soon as they were available. HH and HV channels were extracted from the images and geocoded to polar stereographic projection (EPSG:3996) at a set of distinct pixel spacings. The fast internet connection on board KPH also enabled to log onto the UiT servers (SSH login using a VPN connection) and adjust the workflow during the cruise. The data transfer to KPH was performed using *rsync* to avoid multiple downloads and to facilitate easy continuation of downloads in case of interrupted internet connection.

The time from image acquisition until the data at 200m pixel spacing was available on KPH was

usually around two hours, and less than 70 minutes in the fastest case.

Regular maps and fine-resolution updates of the sea ice situation were produced on board and were provided to the cruise leader and the bridge. The timely data availability greatly improved planning of sea ice work as well as decision making for the other scientific goals of the cruise.

Sea ice observations for validation of sea ice retrieval algorithms from Sentinel-1

For 14 Sentinel-1 scenes, KPH was located within the image footprint at the time of acquisition (Table 7.2). For each of these occasions, special sea ice observations were performed that were dedicated to the interpretation of the SAR imagery as well as the validation of sea ice retrieval algorithms developed at CIRFA. These observations were made independently of and in addition to the standard IceWatch/Assist sea ice observations. They include:

- 360-degree photographs form the observation deck before, during, and after image acquisitions
- time laps photographs and videos from a GoPro camera mounted on the observation deck or the crow's nest
- drone imagery when possible (only at fast ice stations)
- detailed notes of large-scale sea ice features that should be visible in the SAR data
- detailed notes of small-scale sea ice and open water features that may not be resolved on the pixel level of the Sentinel-1 EW GRDM product, but will still affect the overall backscatter

Timestamp	KPH position (lon/lat)	Image ID
2023-08-31	1.5292	S1A EW GRDM 1SDH 20230831T065628 20230831T065
06:56	78.7357	732_050116_0607F0_6A18
2023-09-01	-3.0323	S1A EW GRDM 1SDH 20230901T073728 20230901T073828
07:37	78.8082	050131_06087A_297F
2023-09-02	-5.5156	S1A_EW_GRDM_1SDH_20230902T081844_20230902T081944_
08:18	78.8309	050146_06090B_65CA
2023-09-03	-6.5699	S1A_EW_GRDM_1SDH_20230903T072203_20230903T072303_
07:22	78.8226	050160_060975_7EB4
2023-09-04	-13.2052	S1A_EW_GRDM_1SDH_20230904T080221_20230904T080321_
08:02	78.8212	050175_0609EB_A455
2023-09-04	-14.1637	S1A_EW_GRDM_1SDH_20230904T174852_20230904T174952_
17:48	78.7952	050181_060A30_CB92
2023-09-05	-13.9486	S1A_EW_GRDM_1SDH_20230905T084327_20230905T084431_
08:44	79.1258	050190_060A77_2EA5
2023-09-06	-13.2503	S1A_EW_GRDM_1SDH_20230906T074549_20230906T074649_
07:45	79.0896	050204_060AE7_5947
2023-09-07	-6.9679	S1A_EW_GRDM_1SDH_20230907T082634_20230907T082738_
08:26	78.8000	050219_060B6D_22F9
2023-09-08	-2.0132	S1A_EW_GRDM_1SDH_20230908T072923_20230908T073027_
07:29	78.8268	050233_060BE3_4A98
2023-09-09	-3.0491	S1A_EW_GRDM_1SDH_20230909T081032_20230909T081137_
08:10	78.8812	050248_060C71_1ACF
2023-09-10	-1.9638	S1A_EW_GRDM_1SDH_20230910T071257_20230910T071401_
07:12	78.8240	050262_060CE5_E0E3
2023-09-11	3.9680	S1A_EW_GRDM_1SDH_20230911T075404_20230911T075508_
07:54	78.8323	050277_060D67_09B6
2023-09-12	9.5000	S1A_EW_GRDM_1SDH_20230912T065628_20230912T065732_
06:56	78.8335	050291_060DE9_6B85

Table 7.2: List of Sentinel-1 images with KPH in the foot during the FS2023 cruise.

Figure 7.6: Overview map showing the locations of all seven ice stations, footprints of the Radarsat-2 FQP images, and the locations of KPH at the times the ship was within a Sentinel-1 footprint. Background Sentinel-1 images are from 5th and 6th of September 2023 and show representative sea ice conditions during the cruise.

8. ARGO deployment

C. Stedmon (DTU)

Two ARGO floats from DTU were deployed on the East Greenland Shelf as planned:

WMO #	1902659	3902564
Date/Time		
(UTC)	03/09/2023 15.25	04/09/2023 00.40
Latitude	78 50.056 N	78 49.978 N
Longitude	008 59.916 W	11 3.085 W
Depth on station	223	335
Float	NKE CTS5 PROVOR, CTD-DO-	NKE CTS5 PROVOR, CTD-DO-
make/model	FLBBCD	FLBBCD

Initial deployment was with rapid profiles, then switched to longer periods of parking on seafloor.

Float 1902659: First 6 profiles were very shallow. The float had difficulties penetrating mixed layer. Parameters changed and then two profiles (one down and one up) made it deeper (~160m). Float then likely encountered ice and waiting to surface.

Float 3902564: Similar issue for initial profiles but parameters then changed and successful parking on seafloor attained.

Float data is public and progress can be monitored here: <u>https://fleetmonitoring.euro-argo.eu/float/1902659</u> <u>https://fleetmonitoring.euro-argo.eu/float/3902564</u>

Figure 8: Examples of temperature and salinity data from initial profiles after deployment. Argo float 3902564 between 04/09/2023 and 08/09/2023

9. Outreach

The NPI communication department participated to highlight the time series in the Fram Strait, and the new articles published in 2023. The new findings are of value to the media, so we are providing video + photos to the NRK's climate journalists, aiming for a TV reportage on NRK Dagsrevyen, an article on NRK.no, in addition on the DR1, the Danish public broadcasting.

NPIs social media channels were updated during the cruise, also shared in channels of UiT CIRFA, ETH Zurich and DTU Aqua. A longer video about the Fram Strait work and news articles on npolar.no/forskning.no will be produced ashore. Videos and photos will be archived in NPI's official archives for future internal, external and media coverage.

Appendix A: Diagrams of moorings recovered

Rigg Satt ut 1	F10-18 7 7/9-2022, kl 10:52 0	8 49,636N 01 57,077W	Dyp:	Fra bunn:	Ned i vann:
I	SBE37IM SNR. 22 18 m Vaier	2258	26	2624	10:50
*	ADCP 300 SNR: 10	6831	44	2606	10:50
	DATALOGGER SNR.		46	2604	10:50
	4 glasskuler 3 m Kjetting Galv.				
	AQUADOPP SNR. 15	910	49	2601	10:50
1	RBR ODO SNR. 20	07317	52	2598	10:50
	100 (102) m Kevlar				
Ť	40 m Kevlar				
•	20 (17)m Kevlar				
•	10 m Kevlar				
L	RBR Concerto SNR. 2 SDE27 SNR 2	207318	220	2430	10:20
•	Plastkule 40°' Oransje Svivel 1 m Kjetting Galv.		1.2.V	2430	10.20
₩ <mark>-</mark>	AQUADOPP SNR.	15888	223	2427	10:20
Ŧ	0,5 m Kjetting Galv. Med svi	ivel.			
•	4 x 500 (497,498,498,498) n	n Kevlar			
	208 m Kevlar				
•	100 m Kevlar				
	10 m Keylar Justert opp 3	0 m fra farriae anna			
Ъ	CDE37 CNIP	22261	2626	14	00.41
	6 Glasskuler 3 m Kjetting Galv.	22201	2030	14	09:41
M	AQUADOPP SNR.	15877	2640	10	09:41
⁸	Svivel				
Ş	AR861 SNR.	2879			
I	3,5 m Kevlar				
78	2 m Kjetting				
<u> </u>	ANKER 1150/(950) kg		2650	0	

Rigg] Satt ut	F11-23 16/8-21 kl 12:42	78 49,109N(*) UTC 003 03,087W	Dyp:	Fra bunn:	Ut:
* NOTE	E: Anchor likely 250	0m further north: large drift!			
P	IPS	SNR. 51062	44	2409	12:45
1	SBE37 5 m Kevlar	SNR. 3492	46	2407	12:45
	ADCP300	SNR: 17462	50	2403	12:45
8	0,5 m Kjetting ga	lvanisert			
1	10 m Kevlar				
	Stålkule (gul)		72	2381	
₹ I	Svivel 1 m Kjetting galv	anisert			
	100 m Kevlar SBE37 40 m Kevlar 50 m Kevlar	SNR. 10294 11:597	150	2180	11:59
	SBE37	SNR. 3996	273	2180	11:55
	4 Glasskuler (2 g 2 m Kjetting galv	gule og 2 oransje) anisert			
	RCM9	SNR.1049	276	2177	11:55
8	0,5 m Kjetting ga	lv			
Ŧ	200(199) m Kevli 500(519) m Kevli 500(511) m Kevli	ar ar ar			
	20 m Kevlar 10 m Kevlar Ka SBE37 3 Glasskuler (gul 2 m Kjetting galv	nnskje bort SNR. 7061 le) anisert	1526	927	11:30
ŧ ₽	RCM11	SNR.538	1529	924	11:30
	0,5 m Kjetting ga 500(511) m Kevla 200 m Kevlar 200 m Kevlar	lv ar			
	SBE37 4 Glasskuler (gul 2 m Kjetting galva	SNR. 8821 e) anisert	2439	14	11:07
₿ <mark>8</mark>	RCM Seaguard	SNR.834	2442	11	11:07
8	0,5 m Kjetting rus	tfri			
9	Svivel				
Į	AR861	SNR. 499			
I	5 m Kevlar				
8	3 m Kjetting galva	anisert			
_	ANKER 1230/(98	30) kg	2453(2474)	0	

Rigg F12 Satt ut 15/8-	2-23 21 kl 19:43UTC	78 48,968N 004 00,730W	Dyp:	Fra bunn:	Ut:
	IPS	SNR. 51167	55	1775	17:22
4	SBE37 5 m Kevlar	SNR.14099	57	1773	17:22
Ŏ	ADCP300	SNR: 20021	61	1769	17:22
	0,5 m Kjetting galva	nisert			
8	0,5 m Kjetting galv 10 m Kevlar				
•	Skumkule 37 0,5 m Kjetting galva 0,5 m Kjetting galv	Oransje anisert	74	1756	
l d	SBE37	SNR.13252	150	1680	17:10
	200(199) m Kevlar				
	SBE37	SNR.3994	275	1554	17:10
õ	3 Glasskuler 2 m Kjetting galvani	sert			
ii 📑	RCM9	SNR. 836	279	1551	17:10
₿	0,5 m Kjetting galv 500(498) m Kevlar				
1	500(497) m Kevlar 200(205) m Kevlar				
ų,	SBE37	SNR.13505	1476	354	16:53
	3 Glasskuler 2 m Kjetting galvani	sert			
₩-	RCM11	SNR.556	1480	350	16:53
8	0,5 m Kjetting galv				
	200(207) m Kevlar 100(101) m Kevlar 20 m Kevlar				
	SBE37 4 Glasskuler 2 m Kjetting galvanis	SNR. 8226	1817	13	16:42
Ňæ	Seaguard	SNR.345	1820	10	16:42
Å	0,5 m Kjetting rustfri				
91	Svivel				
	AR861	SNR. 500			
I	5 m Kevlar				
8	2 m Kjetting galvanis	ert			
	ANKER 1190/(960)	kg	1830 (1848)	0	

Rigg] Satt ut	F13-21 14/8-21 KI 20:01 U	78° 50.333N JTC 04° 59.927W	Dyp:	Fra bunn:	Ned i vann
r	IPS5	SNR. 51140	50	960	18:00
ť	5 m Kevlar				
<u>•</u>	ADCP300	SNR: 18070	56	954	18:00
	1.5 m Kinting solu	5146.10070	50	224	10.00
8	1,5 m Kjetting gaiv				
Ş	SEACAT SBE16	SNR. 7253	59	951	18:00
	0,5 m Kjetting galv.				
	Stälkule 37		69	941	
Ĩ	2 m Kevlar	0.0.0	-	070	
	Hvallydopptaker	SNR. 304	72	938	
1	2 m Kevlar				
9	0,5 m Kjetting galv.				
T	20 m Kevlar				
1	Merke for instrumen	it	95		
•	SBE37	SNR. 7060	147	863	17:41
L	100 m Kevlar				
	SBE37	SNR. 3995	245	765	17:36
0	3 Glasskuler 2 m Kjetting galv.				
	RCM9 0,5 m Kjetting galv	SNR.1326	248	762	17:36
I	500(499) m Kevlar				
Į	100 m Kevlar 100 m Kevlar				
	SBE37	SNR. 13504	996	14	17:07
	4 Glasskuler 2 m Kjetting galv.				
de la compañía de la comp	SEAGUARD	SNR. 883	1000	10	17:07
ĝ	0,5 m Kjetting rustfr	i			
1	Svivel				
Į	AR861	SNR. 743			
1	5 m Kevlar				
8	2 m Kjetting galvani:	sert			
	ANKER 1100/(880)	kg	1010(1018)	0	

Rigg F14-24	78 48,844N	Dyp:	Fra bunn:
Satt ut 15/9-2022, kl 11:57	006 29,788W		
Tatt opp Aug 20			

Ned i vann:

	IPS	SNR. 51138		58	215	11:14
	SBE37 5 m Kevlar	SNR: 14097		60	213	11:14
	ADCP 300	SNR: 24518		64	209	11:14
	0,5 m Kjetting Galv. AQUADOPP 4 Glasskuler 2 m Kjetting Galv.	SNR: 16603		66	207	11:14
	40 m Kevlar SBE37 100 (103) m Kevlar	SNR: 13253		108	165	10:58
	SBE56	SNR.10330	(25 m over 56)	211	62	10:53
	SBE56	SNR.10331	(25 m over 37)	236	37	10:50
	50 (51) m Kevlar SBE37 4 Glasskuler 2 m Kjetting Galv.	SNR.3992		261	12	10:48
	Aquadopp	SNR. 16764		264	9	10:48
	Svivel					
	AR861	SNR. 409				
	3,5 m Kevlar					
	2,5 m Kjetting					
A	NKER 920/(740) kg	g		273	0	

Appendix B: Diagrams of moorings deployed

Rigg Satt ut	F10-19 10.09.23 kl 12:37	78 49,628N 001 57,074W	Dyp:	Fra bunn:	Ned i vann
OTatt					
ł	SBE37IM	SNR. 22260	24	2626	12:37
Ò	ADCP 300	SNR: 24899	52	2598	12:32
	Batteribeholder D	L-NP1005	53	2597	12:32
	SAMI CO2/pH	SNR. 227/261	57	2593	12:32
	RBR ODO	SNR. 205002	58	2592	12:32
	100 (102) m Kevla	ır			
•	SBE56	SNR. 12966	125	16	12:24
•	SBE56	SNR. 12967	175	16	12:20
I	40 + 20 m Kevlar				
,	Plastkule 40'' Me 1 m Kjetting Galv	ed svivel.			
ů –	AQUADOPP	SNR. 15877	221	2419	12:10
1	0,5 m Kjetting Sy 0,5 m Kjetting Ga	refast Iv.			
	SBE37	SNR. 20789	250	2417	12:08
i 💼	AQUADOPP	SNR. 16603	760	2594	11:58
Ι	4 x 500 (538,40,	21,198,198,516,506) m Kevlar			
•	200(204) m Kevl	ar			
	100 (101 m Kevl	ar			
Ţ	40 + 20 m Kevlar	r			
•	(totalt i midten 2	2322)			
	SBE37	SNR. 23266	2634	16	11:21
	6 Glasskuler 3 m Kjetting Gal	v.			
B	Aquadopp	SNR. 16764	2639	11	11:21
8 T	Svivel				
ş	AR861	SNR. 2425			
I	5 m Kevlar				
8	3 m Kiettine				
	ANKER 1140/	(1000) kg	2650 (2668)	0	
	ATTACK 1140/	(1000) MB	2050 (2008)	0	

Rigg F1 Satt ut 09.09	1-24 9.2023 kl 14:23	003 04,708W	78 48,601N Dyp:	Fra bunn:	Ut:
Tatt opp	IPS	SNR. 51062	54	2369	12:22
	SBE37 5 m Kevlar	SNR. 3490	56	2367	12:22
—	ADCP300	SNR: 24830	60	2363	12:22
	2 Glasskuler 1 m Kjetting galvani:	sert			
f	5 m Kevlar				
<u> </u>	Stålkule 37 McLar	16	69	2354	
—	0.5 m Kietting galva	nieart			
8	epro7	SND 12222	150	2170	12.08
	100 m Kevlar SBE56	SNR. 12255	175	2179	12:06
I	50 m Kevlar				
1 I	SBE56 20 ± 5 m Keylar	SNR. 12965	200	2179	12:04
-	SBE37	SNR. 4702	244	2179	12:02
	4 Glasskuler (gule) 2 m Kjetting galvani	sert			
nie –	Seaguard	SNR.1846	247	2176	12:02
Å	0,5 m Kjetting galv				
₽	200(208) m Kevlar				
•	500(498) m Kevlar				
±	500(502) m Kevlar				
Ŧ	40 (41) m Kevlar				
	SBE37	SNR. 3552	1496	927	11:34
	4 Glasskuler				
ലുല	2 m Kjetting galvani	sert			
₩ ₽	RCM11	SNR.494	1499	924	11:34
8	0,5 m Kjetting galv				
	200 (201)m Keylar				
•	200 (209)m Kevlar				
+					
	SBE37	SNR. 8227	2409	14	11:10
	2 m Kjetting galvanis	ert			
ů s	RCM8	SNR.10071	2413	10	11:10
å	0,5 m Kjetting rustfri				
ଖ	Svivel				
Į	AR861	SNR. 287			
	3,5 m Kevlar				
8	2 m Kjetting galvanis	ert			
.	ANKER 1153/(980)	kg	2423(Ekko 2474)	0	

Rigg F12-24 Satt ut 08.09.2023 kl 17:03	78 49,121N 004 01.341W	Dyp:	Fra bunn:	Ut:
Tatt opp				
IPS IPS	SNR. 51167	50	1778	16:52
SBE37	SNR.3489	52	1776	16:52
5 m Kevlar				
ADCP300	SNR: 16876	56	1772	16:52
0,5m Kjetting galvar	aisert			
5 m Kevlar				
Stålkule 37 Gul		62	1766	
0,5 m Kjetting galva	nisert			
(SBE37)	SNR.	114	1714	07:54
SBE37	SNR. 14100	150	1714	16:38
SBE56	SNR. 12963	175	1714	16:36
SBE56	SNR. 12968	200	1714	16:34
200 m Kevlar SBE37	SNR.4837	264	1564	16:30
4 Glasskuler				
2 m Kjetting galvanis	ert			
SEAGUARD	SNR. 884	267	1561	16:30
0,5 m Kjetting galv 498 m Kevlar				
501 m Kevlar 200m Kevlar				
SBE37	SNR.3554	1471	357	16:03
3 Glasskuler 2 m Kjetting galvanis	ert			
RCM11	SNR.235	1474	354	16:03
0,5 m Kjetting galv				
199 m Kevlar				
99 m Kevlar				
40 +10 m Kevlar				
SBE37	SNR. 8822	1814	14	15:48
2 m Kjetting galvanis	ert			
RCM11	SNR.228	1817	11	15:48
Å 0,5 m Kjetting rustfri				
d Svivel				
AR861	SNR. 182			
5 m Kevlar				
2 m Kjetting galvanis	ert			
ANKER 1130/(950)	kg	1828 (Ekko1833)	0	

Rigg F13-24 Satt ut 07.09. 2023, kl 19:45	78 50.435N 005 00.433W	Dyp:	Fra bunn:	Ned i vann:
Tatt opp				
IPS5	SNR. 51064	53	967	19:01
SBE37	SNR: 7056	55	965	19:01
5 m Keviar ADCP300	SNR: 18151	59	961	19:01
1,5 m Kjetting galv				
5 m Kevlar				
Plastkule 37 Oransje		66	954	
1,5 m Kjetting galv.				
2 m Kevlar				
Hvallydopptaker M3	SNR. 248	71	949	18:53
2 m Kevlar 0,5 m Kjetting galv. 50 + 20 m Kevlar				
SBE37	SNR. 12234	144	876	17:43
SBE56	SNR. 12960	175	845	18:41
SBE56	SNR. 12961	198	822	18:39
100 (103) m Kevlar SBE37	SNR.3993	251	769	18:36
3 Glasskuler 2 m Kjetting galv.				
RCM9 0,5 m Kjetting galv	SNR.1327	255	765	18:36
500 m Kevlar K				
200 m Kevlar				
50 m Kevlar SBE37	SNR.3551	1005	15	18:10
4 Glasskuler 2 m Kjetting galv.				
RCM11	SNR. 561	1009	11	18:10
0,5 m Kjetting rustfri				
Svivel				
AR861	SNR. 053			
5 m Kevlar				
2 m Kjetting galvanise	ert			
ANKER 1044/(900) k	g	1020 (Ekko 1027)	0	

 \odot

Rigg F14-25 Satt ut 07.09.2023 kl 12:36	78 48,864N 006 30,192W	Dyp:	Fra bunn:	Ned i vann:
•••				
IPS	SNR. 51138	47	222	12:05
SBE37	SNR: 7058	49	210	12:05
5 m Kevlar				
ADCP 300	SNR: 17461	53	205	11:53
Svivel 1 m Kjetting Gal	v.			
4 Glasskuler 2 m Kjetting galv	ε.			
0,5 m Kjetting G	ialv.			
SBE37	SNR. 7054	108	158	11:49
100(104) m Ke	vlar			
SBE37	SNR. 9853	146	120	11:45
50 (52) m Kevlar	•			
SBE56	SNR: 12964	171	67	
SBE56 40(41) m Kevlar	SNR: 12958	196	42	
SBE37	SNR.7057	253	13	12:06
Glasskuler 2 m Kjetting Galv	r.			
RCM 9	SNR. 1046	257	10	12:06
G Svivel				
AR861	SNR. 568			
3,5 m Kevlar				
2,5 m Kjetting ANKER 834/(75	0) kg	266 (274)	0	

Rigg F17-19		78 50. 196 N	Dyp:
Satt ut 06.09.2023,	kl 20:22	008 04.754W	

SBE37 25 m Kevlar Weak link o/u	SNR. 22250	30	196	20:22
3 m Kjetting ga 4 Glasskuler	lv.			
SUNA	SNR.1126	56	172	20:20
0,5 m Kjetting	galv.			
RBR CDOM	SNR.204799	56	172	20:20
40 m Kevlar				
10 m Kevlar				
SIG 250	SNR.103518	107	121	20:12

Fra bunn:

Ut:

Svivel 1,5 m Kjetting galv.

RBR CDOM 0,5 m Kjetting g	SNR.204800 salv.	109	119	20:12
100 (102) m Kev	lar			
SBE56	SNR. 10331	175	32	20:00
SBE56 5 m Kevlar	SNR. 10330	200	32	19:58
SBE37SMP	SNR. 9650	216	12	19:55
2 m Kjetting gal	lv.			
4 GLASSKULE	ĒR	217	11	
RCM8	SNR. 12733	219	9	19:55
AR861Li	SNR. 2426			
3 m Kevlar. 2 m Kjetting g	alv.			
ANKER	735/(650)kg	228 (Ekko 227)	0	

Rigg F20-3 Satt ut 06.09.2023 , kl Tatt opp	78 ± 15:23 010	50.100 N 08.815W	Dyp: F	ra bunn:	Ut:
	ICECat 25 m Wire Weak link 3 m Kjetting	SNR. 22258 galv.	28	298	15:21
	4 Glasskuler	iem			
	SBE37 51 m Kevlar	SNR. 9651	56	270	15:21
	2 GLASSKU	LER	314	12	
ů	RCM	SNR.7718	106	220	15:07
00000	1 m Kjetting	galv.			
	SBE37 (Merke på c 206 m Kevl	SNR. 12232 a 50 m og to lengre ned) ar	109	217	14:52
•	SBE37	SNR. 10295	310	10	14:52
	2 GLASSKU	LER	314	12	
00000000	2 m Kjetting j	garv.			
80	AR661	SNR. 291			
1	5 m Kevlar.				
\$	2 m Kjetting	g galv.			
	ANKER	715/(620)kg	326(Ekko 330)	0	

Appendix C: LADCP script files

Master.txt:

; Append command to the log file

$LC:\KH2023007015\Logfiles\Mladcp_log.txt$

\$P ************************************
\$P ************************************
\$P ********** Master and Slave will ping at the same time *****************
\$P ********** staggered single-ping ensembles every 0.8/1.2 s ***********************************
\$P ************************************

; Send ADCP a BREAK

\$B

; Wait for command prompt (sent after each command)

\$W62

; Display real time clock setting

tt?

\$W62

; Set to factory defaults

CR1

\$W62

; use WM15 for firmware 16.3

; activates LADCP mode (BT from WT pings)

WM15

\$W62

; Rename data file prior to new CTD station and use CTD station nr

RN M0222

; Flow control (Record data internally):

; - automatic ensemble cycling (next ens when ready)

; - automatic ping cycling (ping when ready)

; - binary data output

; - disable serial output

; - enable data recorder

CF11101

\$W62

; coordinate transformation:

; - radial beam coordinates (2 bits)

; - use pitch/roll (not used for beam coords?)

; - no 3-beam solutions

; - no bin mapping

EX00100

\$W62

; Sensor source:

; - manual speed of sound (EC)

; - manual depth of transducer (ED = 0 [dm])

; - measured heading (EH)

; - measured pitch (EP)

; - measured roll (ER)

; - manual salinity (ES = 35 [psu])

; - measured temperature (ET)

EZ0011101

\$W62

;

; - configure staggered ping-cycle

; ensembles per burst

TC2

\$W62

; pings per ensemble

WP1

\$W62

; time per burst

TB 00:00:01.20

\$W62

; time per ensemble

TE 00:00:00.80

\$W62

; time between pings

TP 00:00.00

\$W62

;

; - configure no. of bins, length, blank

; number of bins

WN015

\$W62

; bin length [cm]

WS0800

\$W62

; blank after transmit [cm]

WF0000

\$W62

; ambiguity velocity [cm]

WV250

\$W62

; amplitude and correlation thresholds for bottom detection

LZ30,220

\$W62

; Set ADCP to narrow bandwidth and extend range by 10%

LW1

\$W62

;

; SET AS MASTER ADCP
SM1
\$W62
;+ TRANSMITS SYNCHRONIZING PULSE BEFORE EACH ENSEMBLE
SA011
\$W62
; WAIT .55 s after sending sync pulse
SW05500
\$W62
; SYNCHRONIZING PULSE SENT ON EVERY PING
SIO
\$W62
; keep params as user defaults (across power failures)
СК
\$W62

; echo configuration

T?
\$W62
W?
\$W62
; start Pinging
CS
; Delay 3 seconds
\$D3
\$p ************************************
\$P Please disconnect the ADCP from the computer.
\$P

; Close the log file

\$L

Slave.txt:

; Append command to the log file

LC:\KH2023007015\Logfiles\Sladcp_log.txt

CR1

\$W62

; use WM15 for firmware 16.3

; activates LADCP mode (BT from WT pings)

WM15

\$W62

; Rename data file prior to new CTD station and use CTD station nr

RN S0222_

\$W62

- ; Flow control (Record data internally):
- ; automatic ensemble cycling (next ens when ready)
- ; automatic ping cycling (ping when ready)
- ; binary data output
- ; disable serial output
- ; enable data recorder

CF11101

\$W62

- ; coordinate transformation:
- ; radial beam coordinates (2 bits)
- ; use pitch/roll (not used for beam coords?)
- ; no 3-beam solutions
- ; no bin mapping

EX00100

\$W62

; Sensor source:

; - manual speed of sound (EC)

; - manual depth of transducer (ED = 0 [dm])

; - measured heading (EH)

; - measured pitch (EP)

; - measured roll (ER)

; - manual salinity (ES = 35 [psu])

; - measured temperature (ET)

EZ0011101

\$W62

; - configure staggered ping-cycle

; ensembles per burst

TC2

\$W62

; pings per ensemble

WP1

\$W62

; time per burst

TB 00:00:01.20

\$W62

; time per ensemble

TE 00:00:00.80

\$W62

; time between pings

TP 00:00.00

\$W62

;

; - configure no. of bins, length, blank

; number of bins

WN015

\$W62

; bin length [cm]

WS0800

\$W62

; blank after transmit [cm]

WF0000

\$W62

; ambiguity velocity [cm]

WV250

\$W62

; amplitude and correlation thresholds for bottom detection

LZ30,220

\$W62

; Set ADCP to narrow bandwidth and extend range by 10%

LW1

\$W62

;

; SET AS SLAVE ADCP

SM2

\$W62

; TRANSMITS SYNCHRONIZING PULSE BEFORE EACH ENSEMBLE

SA011

\$W62

; don't sleep

SS0

\$W62

; WAIT UP TO 300 SECONDS FOR SYNCHRONIZING PULSE

ST0300

\$W62

; keep params as user defaults (across power failures)

СК

\$W62

; echo configuration

Т?

\$W62

W?

\$W62

; start Pinging

CS

; Delay 3 seconds

\$D3

\$p

\$P Please disconnect the ADCP from the computer.

; Close the log file

\$L